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Abstract. An implicit Assumption in many dynamic logics of knowl-
edge and belief is that all agents correctly interpret all of the formulas.
However, it is not hard to imagine situations in which some agents misin-
terpret a formula. Such situations may arise because the agents have dif-
ferent awareness, because the language is ambiguous, because the agents
are attending to different questions, or because the agents interpret the
evidence differently. The aim of this paper is to develop a logic of public
announcement allowing us to reason about the above mentioned situa-
tions and to study the dynamics underlying the correction of the agents’
misinterpretation of a formula. In this framework, a public announce-
ment of φ can thus be thought of as a public correction of each agent’s
interpretation of φ, followed by a simultaneous private announcement of
φ to each agent.

Keywords: Public Announcement Logic · Awareness · Interrogative
Epistemology · Ambiguous Language.

An implicit assumption in many dynamic logics of knowledge and belief is that all
agents correctly interpret all of the formulas. However, it is not hard to imagine
situations in which some agents misinterpret a formula. Such situations may arise
because the agents have different awareness [7, 5, 6, 9], because the language is
ambiguous [4], because the agents are attending to different questions [12, 1], or
because the agents interpret the evidence differently [2]. When this happens, it
is possible that the public announcement of a formula φ does not result in a
state where there is common knowledge of φ (even if the formula announced is
Boolean), since some of the agents may misinterpret the announcement of φ and
believe that another formula φ′ is true instead.

The aim of this paper is to develop a logic of public announcement allowing
us to reason about the above mentioned situations and to study the dynamics
underlying the correction of the agents’ misinterpretation of a formula. To do
this, we introduce new dynamic modal operators [φ!]i representing the event
that agent i corrects her interpretation of φ. If each agent’s interpretation of
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φ is corrected before φ is announced, then a public announcement of φ results
in everybody believing that φ.5 In this framework, a public announcement of φ
can thus be thought of as a public correction of each agent’s interpretation of φ,
followed by a simultaneous private announcement of φ to each agent.

In order to discuss the main features of our system, let us consider the fol-
lowing example.

Example 1 Two agents, Ann and Bob, are betting on a coin flip. They use
a Japanese 10 yen coin. On the one hand, Ann, who is familiar with Japanese
coins, correctly interprets the sentence that the coin lands heads (H) as H and
the sentence that the coin lands tails (T ) as T . On the other hand, Bob, who
has never seen a Japanese coin before, misinterprets the sentences H and T , by
interpreting H as T and T as H. After observing that the coin lands on heads,
Ann believes that H is true, while Bob believes that T is true.

Our approach in modeling Ann’s and Bob’s interpretations of the sentences is
syntactical : for each agent i, we define an agent-relative interpretation function
λi that maps each formula to the formula on which it is interpreted. For instance,
in Example 1, we have:

– λAnn(H) = H and λAnn(T ) = T , because Ann correctly interprets H and
T ;

– λBob(H) = T and λBob(T ) = H, because Bob misinterprets H and T .

An alternative, semantic approach is proposed by Halpern and Kets [4],
who develop an Epistemic Probabilistic Logic featuring, for each agent i, an
agent-relative valuation function that assigns to each formula a set of possible
states—the proposition that agent i associates with that formula. So, going back
to Example 1, according to [4], H is true for Ann but false for Bob, and T is
false for Ann but true for Bob. The key difference with our proposal is that, in
our framework, the truth value of a formula is determined by a single, agent-
independent valuation function. So, in the above example, H is true at the actual
state, even if Bob misinterprets H as λBob(H).

An advantage of our syntactic approach is that it allows us to represent not
only the fact that Bob misinterprets H, but also how Bob misinterprets H (cf.
[13, 8]). In general, there are three interesting cases:

1. λBob(H) = T
2. λBob(H) = I, where I is a special formula for ‘ignored ’;
3. λBob(H) = ⊥,

Case 1 can be thought of as involving ambiguous evidence; the evidence that
the coin landed heads is ambiguous in the sense that, while Ann interprets it as
H, Bob interprets it as T . In this case, if H is publicly announced, Bob would
come to believe that T is true rather than H.
5 We restrict our attention to cases in which the announced formula φ is Boolean since

there are formulas, such as Moorean sentences, that are never successful after they
are publicly announced (cf. [14]).
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Case 2 is analogous to situations studied in logics of question (see, e.g.,
[12, 1, 3]). In the Interrogative Logic, introduced by Baltag et. al. [12], agent
i who does not currently attend the question ‘whether φ?’ ignores the public
announcement of φ. In our system, this is represented by letting λi(φ) = I.
When a formula that i maps to I is publicly announced, we stipulate that i
simply ignores the announcement and does not change her beliefs. Our use of
the special formula I allows us to generate agent-relative sub models with the
objective models by collapsing the set of states where the only difference is the
truth of formula that the agent ignores. This is a commonly used strategy in
modeling agents’ unawareness [7, 9] and lack of inquisitive interest [12, 1, 3]. By
using agent-relative interpretation function λi, we defined i’s unawareness of φ
as φ not being in the image of λi. This means that if i is unaware of φ, then
there is no formulas (including φ itself) that i interprets as φ. In our running
example, if λBob(H) = I, then Bob would not go through any belief updates even
when H is publicly announced, so no change in beliefs occurs for Bob.

Finally, Case 3 is a situation where Bob considers a certain outcome of the
coin flip to be impossible. This case reflects Savage’s discussion about the large
and small world problem where he argues that not taking a certain formula into
account “may be useful in case certain states are regarded by [i] as virtually
impossible so that they can be ignored" [10, p.9-10]. In this case, Bob would end
up believing everything if H was publicly announced.

Regarding corrections of one’s interpretation, there are three different ways
to model this operation. Consider Bob’s misinterpretation of H as λi(H) = T
(so Bob misinterprets Heads as Tails). The first way to correct Bob’s misinter-
pretation is to make a public announcement of the form ‘H if and only if T ’. The
second way is to change the valuation function so that the proposition expressed
by H is assigned the proposition expressed by T (cf. dynamic epistemic logic
with assignment [15]). We take a different approach in which correcting a mis-
interpretation of φ for agent i updates the agent-relative interpretation function
so that λi(φ) = φ. For instance, correcting Bob’s misinterpretation of H involves
changing λBob to λ′

Bob which is the same as λBob except λ′
Bob(H) = H. This

change to the agent-relative interpretation function is triggered by the correction
modality [φ!]i.

Our first contribution is to study how the correction modality [φ!]i interacts
with the standard public announcement modality. Of course, correcting i’s in-
terpretation of φ followed by a public announcement of φ will be successful in
the sense that i will believe φ (assuming that φ is Boolean). But, what is the
effect on i’s beliefs if φ is announced before i corrects her interpretation of φ?
In some situations, correcting an interpretation of φ may trigger a belief change
in which i may appear to contract her previously misinterpreted beliefs.

In the full version of the paper, we will explore how our syntactical approach is
related to the alternative semantical approach, both in terms of modeling agents’
misinterpretations and the correction of agents’ misinterpretations. In addition,
we will define an agent’s explicit beliefs taking into account her misinterpre-
tations. Typically, in the literature on unawareness, explicit belief is defined
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in terms of the agent’s implicit beliefs and an awareness operator. However, in
many applications it is preferable to give a direct definition of the agents explicit
beliefs (for instance, Schipper notes that “[i]n economics, we are only interested
in knowledge that the agent is aware of, that can guide her decisions, and that in
principle could be tested with choice experiments" [11, p. 10]). We give a direct
definition of i’s explicit beliefs: i believes what i interprets to be true in all states
i considers possible with i’s limited awareness of the situation. More formally,
i explicitly believes φ at state w provided that there is some formula α such
that λi(α) = φ and α is true at all states v that i considers possible given i’s
information and possible misinterpretations. This notion of possibility in light
of i’s possible misinterpretation is important. Consider, for example, a situation
in which Bob is not aware that the coin could land on its edge (E). The state
where E is true and both H and T false is impossible in light of what Bob is
aware of as he considers only two outcomes to be possible (H or T ), and in every
state H ∨ T must be true. As such, some states may be implicitly accessible for
Bob, but he may not consider them possible due to his limited awareness of the
situation, and his explicit beliefs should only concern what are true at those
implicitly accessible states that Bob considers possible.
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Abstract. The central open question in Descriptive Complexity is whether there
is a logic that characterizes deterministic polynomial time (P-time) on relational
structures. Towards this goal, we define a logic that is obtained from first-order
logic with fixed points, FO(FP), by a series of transformations that include re-
stricting logical connectives. The formalism can be viewed, simultaneously, as
an algebra of binary relations and as a modal Dynamic Logic, where algebraic
expressions describing “proofs” or “programs” appear inside the modalities. The
logic can express both reachability and counting properties on unordered struc-
tures, and can encode an arbitrary P-time Turing machine. The data complexity
of model checking for the logic is in non-deterministic polynomial time (NP). A
crucial question is under what syntactic conditions on the algebraic terms check-
ing just one certificate for the membership in NP is sufficient. This paper sets
mathematical foundations for such a study.

1 Introduction

The goal of Descriptive Complexity is to characterize computational complexity in a
machine-independent way, in order to apply logical and model-theoretic methods to the
study of complexity [23]. However, this goal presents multiple challenges. A logical
characterization of NP was given by Fagin. His celebrated theorem [13] states that the
complexity class NP coincides, in a precise sense, with second-order existential logic.
The central open question in the area is whether there is a logic that exactly character-
izes deterministic polynomial-time (P-time) computability on relational structures. The
problem was first formulated by Chandra and Harel [8] and made precise by Gurevich
[20] (see also [19]). Following the formulations of Dawar [9], we have:

Definition 1. A logic L is a function SEN associating a recursive set of sentences
to each finite vocabulary τ together with a function SAT that associates to each τ
a recursive satisfaction relation relating finite τ -structures to sentences that is also
isomorphism-invariant. That is, if A and B are isomorphic τ -structures and φ is any
sentence of SEN(τ) then (A, φ) ∈ SAT(τ) if, and only if, (B, φ) ∈ SAT(τ).

Definition 2. A logic L captures P-time if
(i) there is a computable function that takes each sentence of L to a polynomial time

Turing machine that recognises the models of the sentence, and
(ii) for every P-time recognizable classK of structures, there is a sentence of L whose

models are exactly K.

? Supported by Natural Sciences and Engineering Research Council of Canada (NSERC).
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Currently, P-time is known to be captured on linearly ordered structures only. On such
structures, first-order logic with fixed points, FO(FP), captures the complexity class P-
time. The result was independently obtained by Immerman and Vardi in the 1980’s [22,
32]. However, even extended with counting terms, FO(FP) + C, the fixed-point logic
is too weak to express all polynomial-time properties on structures without such order,
as shown by Cai, Fürer and Immerman in [7]. For arbitrary structures, capturing P-
time remains an intriguing open problem, that, so far, has resisted any attempt to solve
it. Nevertheless, there has been a lot of development in the area. Dawar, Grohe, Holm
and Laubner introduced Rank logic in [10]. More recent work includes that by Pakusa,
Schalthöfer and Selman [27], Grädel and Pakusa [17], Atserias, Dawar and Ochremiak
[2], Dawar and Wilsenach [11], among others. The recent result by Lichter separated
Rank logic [10] from P-time [25]. Despite the resent advances, Choiceless Polynomial
Time [4] proposed in 1999, remains perhaps the most prominent candidate for a logic
for P-time. In a related area of Constraint Satisfaction Problem (CSP), a much more sig-
nificant progress has been made. The long-standing Fedor-Vardi dichotomy conjecture
has been resolved by Bulatov and Zhuk in 2017 [6, 35]. Universal-algebraic techniques
played a pivotal role in that development. Unfortunately, the current approaches in De-
scriptive Complexity do not allow for such techniques. In particular, explicit counting
constructs, that are used in several approaches to the problem, e.g., [5, 10, 18] are an
obstacle toward algebraization.

In this paper, we develop an algebraic view on the problem. Our algebra is, si-
multaneously, a modal Dynamic Logic, where programs (or proofs) appear inside the
modalities. This approach is very different from any earlier attempts to characterize P-
time. Our strategy is to allow the logic express exactly NP, and then use techniques of
Universal Algebra to look for syntactic conditions for P-time.

To obtain the logic, we started with FO(FP), the logic for which a partial solution
to the main problem is known by the Immerman-Vardi theorem, [22, 32], and specified
inputs and outputs of atomic expressions. We obtained an algebra of binary relations,
similar to Jonsson and Tarski [24]. The step towards binary relations was inspired, in
part, by the good properties of two-variable fragments of FO [31] that have, e.g., order-
invariance [34]. Unfortunately, such fragments are not expressive enough to encode
Turing machines. To overcome this obstacle, we lifted the algebra to operate on binary
relations on relational structures. Such relations, intuitively, encode state transitions.
That initial algebra [30], based on FO(FP), became our first tool to analyze how infor-
mation propagates from inputs to outputs. We then investigated what syntactic features
make information flows efficient. We identified two such parameters: the algebraic op-
erations and the logic that specifies atomic units (here, called modules). The atomic
units were taken to be a modification of conjunctive queries. Intuitively, they represent
conditional non-deterministic assignments. We took our algebraic operations to be a
restriction of FO connectives, similarly to Description logics [3]. Restricting negation
(full complementation) to its unary counterpart is already known to imply good compu-
tational properties [28].1 However, in our case, all connectives and the iterator construct
of FO(FP) had to be restricted. In particular, we replaced the “static” (Boolean) con-

1 Unary negation is related to the negation of modal logics. Such logics are known to be robustly
decidable [33, 16].
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junction and disjunction with their “dynamic” counterparts – sequential composition
and preferential union. Restricting FO connectives allowed us to avoid some known
undecidability pitfalls. Despite its simplicity, the algebra defines the main constructs
of imperative programming, such as if-then-else and while loops. Thus, each
algebraic term can be thought of as a program, where atomic operations are conditional
non-deterministic assignments. To control the complexity of the computation, rich tests
(i.e., those extended over time) are limited to querying the trace of the program. More-
over, all relations that change from state to state are singleton-set monadic. This restric-
tion allows us to control the length of the computation entirely by logical means, unlike
the externally imposed polynomial bounds in [4]. Many typical P-time properties on un-
ordered structures such as several cardinality properties (e.g., the query EVEN asking
if the size of the input domain is even), reachability-type properties, and those requiring
“mixed” propagations, e.g., mod 2 linear equations (that include the CFI example [7],
see [1]), are also expressible. In this paper, we show that: (1) The logic encodes an ar-
bitrary P-time Turing machine by guessing a linear order on domain elements first. (2)
The data complexity of model checking is in NP, and one might need to guess poten-
tially exponentially many traces. The remaining goal is to find under what conditions on
the algebraic terms, the traces are indistinguishable in a precise mathematical sense, so
that checking one (any) of them is enough. Decidability of these symmetry conditions
would give us a logic for P-time – the syntax would include the logic presented here,
plus these algebraic conditions. Both Definitions 1 and 2 would be satisfied. The main
contribution of this paper is to set the stage for an algebraic study of such symmetries.

The rest of the paper is organized as follows. In Section 2, we introduce basic
notations and give technical preliminaries. In Section 3, we present the syntax of the
algebra and the atomic transitions, and in Sections 4 and 5, we define the semantics
in terms of binary relations on relational structures. In Section 6, we reformulate the
algebra as a modal Dynamic Logic and show how to define the main programming
constructs. In Section 7, we define the notion of a computational problem specified
by an algebraic term, and the set of certificates for such a problem. Section 8 shows
how any P-time Turing machine can be encoded. We conclude, in Section 9, with a
summary.

2 Technical Preliminaries

In this section, we set basic notations and terminology. We review Conjunctive Queries
and PP-definable relations. Importantly, we introduce a Choice construct that, given
a set, selects an element of it. We assume familiarity with the basic notions of first-
order (FO) and second-order (SO) logic (see, e.g., [12]) and use ‘:=’ to mean “is by
definition”.
Conjunctive Queries and SM-PP-Definable Relations Let τ be a relational vocabu-
lary, which is finite (but is of an unlimited size). Let τ := {S1, . . . , Sn}, each Si has
an associated arity ri, and D be a non-empty set. A τ -structure A over domain D is
A := (D; SA

1 , . . . , S
A
n ), where SA

i is an ri-ary relation called the interpretation of
Si. In this paper, all structures are finite. If A is a τ -structure, A|σ is its restriction to a
sub-vocabulary σ. Let U denotes the set of all τ -structures over the same domain D.
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Let C be a class of FO structures of some vocabulary τ . Following Gurevich [20],
we say that an r-ary C-global relation Q (a query) assigns to each structure A in C
an r-ary relation Q(A) on A; the relation Q(A) is the specialization of Q to A. The
vocabulary τ is the vocabulary of Q. If C is the class of all τ -structures, we say that
Q is τ -global. Let L be a logic. A k-ary query Q on C is L-definable if there is an
L-formula ψ(x1, . . . , xk) with x1, . . . , xk as free variables such that for every A ∈ C,
Q(A) = {(a1, . . . , ak) ∈ Dk | A |= ψ(a1, . . . , ak)}. Query Q is monadic if k = 1.
A conjunctive query (CQ) is a query definable by a FO formula in prenex normal form
built from atomic formulas,∧, and ∃ only. A relation is Primitive Positive (PP) definable
if it is definable by a CQ: ∀x1 . . . ∀xk

(
R(x1, . . . , xk)↔ ∃z1 . . . ∃zm (B1∧· · ·∧Bm)

)
,

and each Bi has object variables from x1, . . . , xk, z1, . . . , zm.

Example 1. Relation Path of Length Two is PP-definable, but not monadic:
∀x1∀x2

(
Z(x1, x2)↔ ∃z(Y (x1, z) ∧ Y (z, x2))

)
.

Example 2. Relation At Distance Two from X is monadic and PP-definable:
∀x2

(
Z(x2)↔ ∃x1∃z (X(x1) ∧ Y (x1, z) ∧ Y (z, x2))

)
.

We will restrict relations as in Example 2 to put just one (arbitrary) element in their
extension.

Definition 3. Singleton-set-Monadic Primitive Positive (SM-PP) relation is a singleton-
set relation R implicitly definable by:

∀x
(
R(x)→

(
∃z1 . . . ∃zm (B1 ∧ · · · ∧Bm)︸ ︷︷ ︸

Conjunctive Query

∧ ∀x∀y(R(x) ∧R(y)→ x = y)
))
,

(1)
where each Bi is a relational variable from V with object variables from x, z1, . . . , zm
such that it is either (a) unary or (b) the interpretation of the vocabulary symbol s(Bi)
comes from the input structure A (i.e., it is EDB in the database terminology). We use
a rule-based notation for (1):

R(x)� B1, . . . , Bm. (2)

Notation �, unlike Datalog’s ←, is used to emphasize that only one element is put
into the relation in the head of the rule (i.e., the relation on the left of�).

Example 3. Suppose we want to put just one (arbitrary) element in extension of the
relation Z denoting At Distance Two from Example 2. In the rule-based syntax (2):{

Z(x2)� X(x1), Y (x1, z), Y (z, x2))
}
.

The defined relation is SM-PP. Since only one domain element, out of those at distance
two from X , is put into Z, there could be multiple outcomes, depending on the choice.

Example 4. A non-example of SM-PP relation is Path of Length Two (Example 1). The
relation on the output is neither monadic nor singleton-set.
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Strings and Trees Let Σ be an alphabet. A finite word (or a string) is a finite sequence
w := a0 · a1 . . . an of letters in Σ, where the indexes are called positions. We have a
binary relation on words w v w′ to denote that w is a prefix of w′. We use notation
wi for the prefix of w ending in position i ∈ N. The length of w is |w| := n + 1. The
empty word, i.e., such that |w| = 0, is denoted e. The positions in word w are denoted
as i, j ∈ N. We use w(i) for the i-th letter in word w. Let last(w) := |w| − 1. We
write w(last) to denote w(last(w)). A word such that w(0) = a, where a ∈ Σ, is
denoted w(a). Later in the paper, Σ will be U, the set of all τ -structures over the same
domain.A tree over Σ is a (finite or infinite) nonempty set Tr ⊆ Σ∗ such that for all
x · c ∈ Tr , with x ∈ Σ∗ and c ∈ Σ, we have x ∈ Tr . The elements of Tr are called
nodes, and the empty word e is the root of Tr . For every x ∈ Tr , the nodes x · c ∈ Tr
where c ∈ Σ are the children of x. A node with no children is a leaf. We refer to the
length |x| of x as its level in the tree.

e

B

A
A ·B

A ·B ·B
A ·B ·B ·B

A ·B ·B · A
A ·B · A

A · A

Fig. 1. A Full tree over U. Some of its nodes (such as
the shaded one) may correspond to traces of programs (or
proofs).

A |Σ|-ary tree is full if each
node is either a leaf or has
exactly |Σ| child nodes. It
is Full if it has no leaves. A
branch b of a tree Tr is a set
b ⊆ Tr such that e ∈ b and
for every x ∈ b, either x is a
leaf, or there exists a unique
c ∈ Σ such that x · c ∈ b. In
a Full tree, every branch is
infinite.

3 Algebra of Binary Relations: Syntax

In this section, we introduce the syntax of an algebra of binary relations on strings.
Intuitively, well-formed expressions in this algebra represent programs.
A (module) vocabularyM is a triple (Names, ar, iar):

– Names is a nonempty set, the elements of which are called module names;
– ar assigns an arity to each module name in Names;
– iar assigns an input arity to each module name M in Names , where iar(M) ≤

ar(M).
In this paper, each module name in Names will refer to a set of rules of the form

(2). We also fix a countably infinite supply of relational variables V. Our algebraic
expressions will use variables in V. A function s : V → τ (discussed in the Semantics
section) will instantiate variables in V with the elements of a relational vocabulary τ .
Algebraic Syntax We call this syntax one-sorted to contrast it with the two-sorted one
in the form of a modal Dynamic Logic in Section 6. Algebraic expressions (terms) are
given by the grammar:

α ::= id |M(Z̄) |y α |x α | α ; α | α t α | X = Y | X =t Y | α↑, (3)

where X =t Y must occur within the scope of y or x. Here, M is any module
name in M, Z̄ is a tuple of variables; and X,Y are variables in V. For atomic mod-
ule expressions, i.e., expressions of the form M(Z̄), the length of Z̄ must be equal
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to ar(M). In practice, we will often write M(X̄; Ȳ ) for atomic module expressions,
where X̄ is a tuple of variables of length iar(M) and Ȳ is a tuple of variables of length
ar(M) − iar(M). In addition, we have: Identity (Diagonal) (id), atomic module sym-
bols (M(Z̄)), Sequential Composition (;), Forward-facing (y) and Backwards-facing
(x) Unary Negations, also called Anti-Domain and Anti-Image, respectively, Prefer-
ential Union (t), which is a restriction of Union, Equality Test (X = Y ), Comparison
over Time (X =t Y ), and Maximum Iterate (↑), which is a modification of transitive
closure that outputs the longest transition.

Atomic Transitions: SM-PP-Definable Our algebra has a two-level syntax: in addi-
tion to the algebraic expressions (3), atomic state-to-state transitions are as follows.

Definition 4. An SM-PP transition (atomic module) is a set of rules of the form (2).

Thus, SM-PP transitions have: Outputs: SM-PP definable relations, as per Definition
3, and Inputs: monadic or given by the input structure A.
Atomic modules provide a transition system context, denoted T , for the algebra. In this
context, the only relations that change from structure to structure are unary and contain
one domain element at a time, similarly to registers in a Register Machine [29].

4 Semantics of Atomic State Transitions

Next, we provide a meaning to atomic transitions.We give an example of how algebraic
expressions are used, and provide some intuitions about the underlying machine model.

MP2

E

S
R2

τ τ

A B

Fig. 2. State transition.

To gain intuitions, consider a module with the name
MP2. Let A and B be relational τ -structures. In each
transition (A,B), the inputs of this module (E and
S in Figure 2) are “read” in A and the outputs (R2
in Figure 2) are updated in B. Relations unaffected
by the update are copied from A to B. This preserva-
tion principle for atomic transitions, here formalized
by (4), appeared as a commonsense law of inertia [26].

Following these intuitions, we specify a transition system T (M) in (4). For each M , it
is a binary relation on τ -structures, as in Figure 2. The reader can skip the details at the
first reading, and go directly to Example 6 (a specification of EVEN).

A semantic context T := T (s,D, I(·)) is a function that maps each atomic symbol
M inM to a binary relation on the set U of all τ -structures over the domain D. This, a
semantic context T gives a transition relation on U. Function T is parameterized with:

– a variable assignment (an instantiation function) s : V→ τ , where τ is a relational
vocabulary;

– a base set D, which is, in this paper, the domain of the input structure;
– a static interpretation I(M) of module names M inM. For each atomic module

name M in M and tuples of variables Z̄ and X̄ ⊆ Z̄, with |Z̄| = ar(M) and
|X̄| = iar(M), static interpretation I(M) is a function I that returns a set of s(Z̄)-
structures (s(Z̄) ⊆ τ ) with domainD, where an interpretation of s(X̄) is expanded
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to the entire vocabulary s(Z̄) to satisfy a specification in a logic LT .2 Here, LT is
given by Definition 4.

To finish defining semantic context T := T (s,D, I(·)), we reinterpret each static inter-
pretation dynamically, that is, as a state transition represented by a dynamic relation
(DR), i.e., a binary relation on τ -structures, as in Figure 2. For atomic DRs, we re-
quire that, relations, that are not explicitly modified by the expansion from s(X̄) to
s(Z̄), remain the same. This includes interpretations of unconstrained variables that are
interpreted arbitrarily. Taking into account this intuition, we now present atomic DRs
formally. Static interpretation I(M), for each atomic module name M , gives rise to a
binary relation T (M) on U defined as follows:

T (M(X̄; Ȳ )) :=
{

(A,B) ∈ U×U | exists C ∈ I(M) and
C|s(X̄) = A|s(X̄), C|s(Ȳ ) = B|s(Ȳ ), and A|τ−s(Ȳ ) = B|τ−s(Ȳ )

}
.

(4)

Example 5. Consider, again, Figure 2. Let MR2 in module vocabularyM be the name
of the atomic module from Example 3 specifying At Distance Two. Let τ contain pred-
icate symbols E (edge), S (source) and R2 (reach-in-two-steps), among other symbols,
and let the instantiation function s maps relational variables X , Y and Z to S, E and
R2, respectively. Then static interpretation I(MR2) is a set of all s(X,Y, Z)-structures
over some domain D that are the models of the expression from Example 3. Now, sup-
pose, according to the vocabularyM, we have: MR2(X,Y , Z), where the variables X
and Y in the input positions are underlined. Then by (4), we have a binary relation on
τ -structures, with s(X,Y, Z) ⊆ τ . Edges E = s(Y ) and the start node S = s(X) are
“read” in a τ -structure A on the left, and a node reachable in two steps (just one of such
nodes) is put in R2 = s(Z) in B on the right.

Example 6. Before we define the semantics of the algebraic operations, we show how
they will be used. We consider the problem EVEN, that, given a structure A with an
empty vocabulary, checks: Is |dom(A)| even? EVEN is P-time computable, but is not
expressible in MSO, Datalog, or any fixed point logic, unless a linear order on the
domain elements is given. We construct a path in the transition system in two-step in-
crements. Here, again, we underline the variables in V that appear in the input positions.
We also use more informative names for the relational variables, which will be our prac-
tice from now on. We use a secondary numeric domain with successor function succ.
The minimal and maximal elements of this domain are stored in relations Min and Max,
respectively, and Max is the cardinality of the main domain. Module
InitiateCounter :=

{
C(x)� Min(x)

}
initiates the counter to the minimal element

stored in the relation Min. Action IncreaseCounter :=
{
C(succ(x))� C(x))

}
increases the counter. Transition GuessP :=

{
P (x)�

}
puts all possible domain

elements into P and chooses one of them. We define a subprogram:

GuessNew := GuessP ; NewP? ; IncreaseCounter.

The problem EVEN is now specified as:

αE := repeat (GuessNew ; GuessNew) until C = Max.
2 We abuse the notations slightly by writing s(Z̄) to denote the set {s(Z1), s(Z2) . . . }, where
Z1, Z2, . . . are variables in Z̄.
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The rich test NewP? within GuessNew is represented by ¬〈P=tP | T?, where 〈· · · |
denotes a left-facing existential modality evaluated within the trace of the program, T
denotes True, and P=tP is a binary relation that returns pairs of situations where the
current value stored in P equals the one in the past. The rich test, evaluated now, checks
if there is no situation in the past where the value stored in P is the same as now. The
modality and the Repeat-Until construct are definable in the algebra (3).

Given a structure A over an empty vocabulary, αE is executed successfully (a term
formally defined in Section 7) if and only if the size of the input domain is even.

Machine Model We can think of evaluations of algebraic expressions such as αE as
computations of Register machines (see, e.g., [29]) . We have: (1) monadic “registers”
– predicates used during the computation, each containing only one element at a time,
such as P,C above; (2) the “real” inputs, such as edges E(x, y) of an input graph, are
of any arity; (3) atomic transitions correspond to conditional assignments with a non-
deterministic outcome; (4) in each atomic transition, only the registers of the current
state or the input structure A are accessible; (5) registers can be checked for equalities
only and no elements are referred to directly (i.e., via constants); (6) computations are
controlled by algebraic terms that, intuitively, represent programs.

While, in each state, the registers are singletons, their content is accumulated in the
guessed path (a finite sequence of τ -structures). Moreover, in Example 6, each path
gives us an implicit linear order on the guessed domain elements.

5 Semantics of Algebraic Operations

We now introduce a semantics of the algebraic operations as binary relations on strings
of relational τ -structures. That is, (3) is an algebra of transductions or string-rewriting
operations.

Global Dynamic Relations Recall that DR stands for a Dynamic Relation. We, again,
adapt Gurevich’s terminology [20], as we did in Section 2. We say that every algebraic
expression α denotes a global DR JαK: a function that maps T to the DR α(T ) := JαKT .
Next, we give the semantics of the main operations as binary relations.

Identity (Diagonal) JidKT := {(w,w′) ∈ U+×U+ | w = w′}.
Atomic Transductions

JM(X̄; Ȳ )KT :=
{

(w,w′) | (w(last), w′(last)) ∈ T (M(X̄; Ȳ )) ∧ w v w′
}
.

Sequential Composition
Jα ; βKT := {(w,w′) ∈ U+×U+ | ∃w′′ ((w,w′′) ∈ JαKT and (w′′, w′) ∈ JβKT )}.

Equality Test JX = Y KT := {(w,w) ∈ U+×U+ | ((s(X))w(last) = (s(Y ))w(last)}.
That is, the interpretations of the two symbols in the last structure of string w coincide.

Maximum Iterate is a determinization of the Kleene star α∗ (reflexive transitive clo-
sure). It outputs only the longest, in terms of the number of α-steps, transition out of all
possible transitions produced by the Kleene star. We define it as:α↑ =

⋃
0≤n<ωmax(αn),

where α0 := id, and αn+1 := α;αn. Here,max(αn) is an abbreviation that, intuitively,
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means that applying α again (n+ 1’st time) is undefined. We omit the technical details
of the formalization for lack of space.

Preferential union

Jα t βKT :=
{

(w,w′) ∈ U+×U+

∣∣∣∣∣∣
(w,w′) ∈ JαKT if (w,w′) ∈ JαKT ,
(w,w′) ∈ JβKT if (w,w′) 6∈ JαKT

and (w,w′) ∈ JβKT

 .

Thus, we perform α if it is defined, otherwise we perform β. This operation is a deter-
minization of Union.

The meanings of y and x are reduced to interpretations J·KwT with respect to a trace w.
Jy αKT := {(w,w) ∈ U+×U+ | (w,w) ∈ Jy αKwT }.
Jx αKT := {(w,w) ∈ U+×U+ | (w,w) ∈ Jx αKwT }.

In-Trace Forward Unary Negation (Anti-Domain) says “from wt, there is no outgo-
ing α-transition that ends somewhere within the trace wn”.3 The subscripts n and t in
wn and wt intuitively stand for “now” and “then”, respectively.

Jy αKwnT := {(wt, wt) ∈ U+×U+ | wt v wn ∧ ∀w′ v wn (wt, w
′) 6∈ JαKwnT }.

In-Trace Backwards Unary Negation (Anti-Image) says “in wt, there is no incoming
α-transition that starts within the trace wn”. Thus,

JxαKwnT := {(wt, wt) ∈ U+×U+ | wt v wn ∧ ∀w′ v wt (w′, wt) 6∈ JαKwnT }.

Each of the unary negations is a restriction of the regular negation (complementation).
Immediately from the semantics, we see that y and x are not idempotent, yy α 6= α,
but are weakly idempotent, yyy α =y α, as is the Intuitionistic negation. This is
because Anti-Domain applied twice (yy) produces Domain, and the Domain of an
Anti-Domain (yyy), is, again, an Anti-Domain (y) of α.

Comparison Extended over Time only appears in the scope of y or x, so is evaluated
in a trace only. JX=tY KwnT :=

{(w,w′) ∈ U+×U+ | (s(X))w(last) = (s(Y ))w
′(last) ∧ w @ w′ v wn}. That is,

the operation returns pairs of strings (the second one extends the first) such that the
interpretations of X and Y , in the last states of both strings, coincide.

In-Trace Other Operations id, M , ;, t, ↑. Since other operations can occur withing a
rich test, they are evaluated with respect to a trace as well. Their semantics J·KwnT is the
same as J·KT above, except a condition is added that all strings are substrings of wn.

6 Dynamic Logic

In this section, we provide an alternative (and equivalent) two-sorted version of the
syntax (3) in the form of a Dynamic logic. While the two formalizations are equivalent,
in many ways, it is easier to work with the logic. We demonstrate that the logic defines

3 Ideally, these operations should be denoted with a notation closer to the typical negation sign,
i.e., more “square”, however we could not find a suitable pair of Latex symbols. Any sugges-
tions for a better solution are welcome.
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all major constructs of imperative programming. The syntax is given by the grammar:

α ::= id |Ma(Z̄) |y α |x α | α ; α | α t α | X = Y | X =t Y | α↑ | φ?
φ ::= T |Mp(Z̄) | ¬φ | |α〉 φ | 〈α| φ. (5)

The subscripts a and p of M stand for “actions” and “propositions”, respectively. In-
tuitively, proposition modules Mp make only self-loop transitions. The expressions in
the first line of (5) are typically called process terms, and those in the second line state
formulae. State formulae φ are “unary” in the same sense as P (x) is a unary notation
for P (x, x). Semantically, they are subsets of the identity relation on U.

The state formulae in the second line of (5) are shorthands that use the operations
in the first line: T := id, ¬φ :=y φ, |α〉 φ :=yy α ; φ, 〈α| φ :=xx φ ; α,
and φ? :=yy φ. State formulae |α〉 φ and 〈α| φ are right- and left-facing existential
modalities, where, intuitively, the existential quantifier ranges over states in a path. We
define Dom(α) := yyα and Img(α) := xxα. With this notation, we have that
|α〉 φ = Dom(α ; φ), and 〈α| φ = Img(φ ; α). Clearly, Dom(Img(α)) = Img(α).
We define universal modalities |α] φ := y |α〉 y φ and [α| φ := x 〈α| x φ dually.

Example 7. We now give an example of evaluating formula 〈M |(Q = R)?. Intuitively,
the semantics should return a set of pairs of identical strings (w,w) such that M
ends in w, and Q = R holds where M starts. First, we simplify 〈M |(Q = R)? =
Dom(Img((Q = R) ;M)) = Img((Q = R) ;M) = xx((Q = R) ;M). Evaluation
of a rich test reduces to its evaluation over a trace: Jxx αKT = {(w,w) | (w,w) ∈
Jxx αKwT }. From the definition of the semantics of x, we have Jxx αKwnT =
{(wt, wt) | wt v wn ∧ ∃w′ v wn (w′, wt) ∈ JαKwnT }. To apply this expres-
sion, we identify both wn and wt with w, and α with ((Q = R) ; M), and evaluate
(w′, w) ∈ J(Q = R) ; MKwT , where w′ v w. Evaluating the composition requires the
existence of w′′ where (Q = R) ends and M begins; and after applying the semantics
of Equality Check, we observe that w′′ must be equal to w′. Thus, the semantics of the
original expression gives us (w,w) such thatM makes a transition from w′ to w, where
w′ v w, and at w′, the equality holds.

Programming Constructs It is well-known that in Propositional Dynamic Logic [14],
imperative programming constructs are definable using a fragment of regular languages,
see the Dynamic Logic book by Harel, Kozen and Tiuryn [21]. The corresponding lan-
guage is called Deterministic Regular (While) Programs in [21].4 In our case, impera-
tive constructs are definable by:

skip := id, fail := y id,
if φ then α else β := (φ? ; α) t β,

while φ do α := (φ? ; α)↑ ; (y φ?),
repeat α until φ := α ; ((y φ?) ; α)↑ ; φ?.

Thus, importantly, the non-determinism of regular languages’ operations ∗ and ∪ is not
needed to formalize these programming constructs.

4 Please note that Deterministic Regular expressions and the corresponding Glushkov automata
are unrelated to what we study here. In those terms, expression a ;a∗ is Deterministic Regular,
while a∗ ; a is not. Both expressions are not in our language.
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7 Satisfaction Relation and Complexity of Query Evaluation

We now define binary and unary satisfaction relations and our main query. Using this
query, we formalize the notion of a computational problem specified by an algebraic
term, and its certificates. We analyze the data complexity [32] of the main query (i.e.,
when the query is fixed and structures vary). We prove that it is NP-time in the size of
the input structure.

Definition 5. Logic L is the logic (5) (equivalently, (3)) with SM-PP atomic transitions
(see Definition 4). An L-term is a term in this logic.

Definition 6. Let α be an L-term. We say that pair of strings (w,w′), satisfies α under
semantic context T if (w,w′) ∈ JαKT . In symbols: (w,w′) |=T α ⇔ (w,w′) ∈ JαKT .
For state formulae φ in (5), we define: w |=T φ ⇔ (w,w) ∈ JφKT .

Suppose (v, w) |=T α, for some w, and v = A. Then we write our main query

A |=T |α〉〉T (6)

to denote that there is a successful execution of α starting at A. Moreover, the stringw
is a trace that starts at A and witnesses (6). Inside the modality |α〉〉, we have, essentially,
an imperative program. We use the query (6) to formalize computational problems.

Definition 7. A computational problem Pα specified by α is an isomorphism-closed
class of structures (set if the domain is known): Pα := {A | A |=T |α〉〉T}.

Definition 8. The set of strings Hα
A := {w | (A, w) |=T α} is a set of certificates for

the membership A ∈ Pα.

Example 8. We continue with Example 7 adapting the informal language of Register
Machines (Section 4). Suppose we have registers P , Q and R. Let, in structure A, P
and Q contain a, and R contains b. Let M modify the contents of Q by copying R, i.e.,
M(Q,R) :=

{
Q(x)� R(x)

}
. Then A |=T |M ;〈M |(Q = R)?〉〉T, and string A ·B

witnesses it, where B is the result of performing M in A.

Theorem 1. The data complexity of checking A |=T |α〉〉T , where the L-term α and
the semantic context T are fixed, and input structures A vary, is in NP.

Proof (Outline). We observe that, for fixed α and T , the number of states visited during
a computation can be at most polynomial in the size of the input structure. This is
because (1) Maximum Iterate disregards cycles (if there is a loop, there is no model),
and (2) the total number of states in a transition system can be at most polynomial in the
size of the input structure (all predicates that change from state to state are singleton-
set). We guess a sequence of τ -structures of length nk, where n = dom(A). Then
we verify whether the sequence is a witness for the main query. We argue that SM-PP
atomic modules with rules of the form (3) can be evaluated in P-time, and the algebraic
operations preserve this property. For a fixed formula, there could be only a constant
number of loops. Details will be given in the full version of the paper.
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Thus, if we know what choices have been made, verifying A |=T |α〉〉T, which
is our main task, is in P-time. But, there could be exponentially many such sequences
of choices in general. Thus, part (i) of Definition 2 of a logic for P-time is not yet
satisfied. To complete the work, we need to find decidable conditions under which the
computation can proceed by making guesses at each step arbitrarily, i.e., by using any
certificate in Hα

A. Thus, we need to study symmetries among the elements of the set
L(α) :=

⋃
A∈Pα H

α
A, which is a formal language specified by α.

8 Encoding P-time Turing Machines

In this section, we demonstrate that our logic is strong enough to encode any P-time
Turing machine over unordered structures. More specifically, we show that, for every
polynomial-time recognizable class K of structures, there is a sentence of logic L (in-
troduced in Definition 5) whose models are exactly K. This corresponds to part (ii) of
Definition 2 of a logic for P-time.

We focus on the boolean query (6) from Section 7 and outline such a construction.
The main idea is that a linear order on domain elements is induced by a path in a
Kripke structure, that is, by a sequence of atomic choices. In this path, we produce
new elements one by one, as in the EVEN example. The linear order corresponds to an
order on the tape of a Turing machine. After such an order is guessed, a deterministic
computation, following the path, proceeds for that specific order. Note that, similarly to
Theorem 1, one arbitrary sequence of choices is enough to generate a specific order on a
tape of a deterministic Turing machine. We now explain this construction. We assume,
without loss of generality that the machine runs for nk steps, where n is the size of the
domain. The program is of the form:

αTM(A) := ORDER ; START ; repeat STEP until END.

Procedure ORDER: Guessing an order is perhaps the most important part of our con-
struction. We use a secondary numeric domain with a linear ordering. We guess ele-
ments one-by-one, as in the EVEN example, and associate an element of the primary
domain with an element of the secondary one, using co-existence in the same structure.
Each path corresponds to a possible linear ordering.5 Once an ordering is produced, the
primary domain elements are no longer needed. Later, in START procedure and in the
main loop, we use k-tuples of the elements of the secondary domain for positions on the
tape and time, to count the steps in the computation. We use the lexicographic ordering
on these tuples. “Next in the lexicographic ordering” relation can be produced on the
fly, using tuples of unary definable relations, that change from state to state.

Procedure START: This procedure creates an encoding of the input structure A (say,
a graph) in a sequence of structures in the transition system, to mimic an encoding
enc(A) on a tape of a Turing machine. We use structures to represent cells of the tape of
the Turing machine (one τ -structure = one cell). The procedure follows a specific path,
and thus a specific order generated by the procedure START. An element is smaller in

5 Note that the order is defined not with respect to an input Tarski structure, but with respect to
the Kripke structure where Tarski (i.e., FO) structures are domain elements.
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that order if it was generated earlier, which can be checked using Comparisons Extended
in Time. Subprocedure Encode(vocab(A), . . . , Sσ, . . . , P̄ , . . . ) operates as follows. In
every state (= cell), it keeps the input structure A itself, and adds the part of the encoding
of A that belongs to that cell. The interpretations of P̄ over the secondary domain of
labels provide cell positions on the simulated input tape. Each particular encoding is
done for a specific induced order on domain elements, in the path that is being followed.

In addition to producing an encoding, the procedure START sets the state of the
Turing machine to be the initial state Q0. It also sets initial values for the variables used
to encode the instructions of the Turing machine.

Expression START is similar to the first-order formula βσ(ā) used by Grädel in
his proof of capturing P-time using SO-HORN logic on ordered structures [15]. The
main difference is that instead of tuples of domain elements ā used to refer to the ad-
dresses of the cells on a tape, we use tuples P̄ , also of length k. Grädel’s formula
βσ(ā) for encoding input structures has the following property: (A, <) |= βσ(ā) ⇔
the ā-th symbol of enc(A) is σ. Here, we have:

(A, w) |=T Encode(. . . , Sσ, . . . , P1(a1), . . . , Pk(ak), . . . )
⇔ the P1(a1), . . . , Pk(ak)-th symbol of enc(A) is σ,

where ā is a tuple of elements of the secondary domain, w is a string that starts in
input structure A and induces a linear order on the input domain through an order on
structures (states in the transition systemRA rooted in A). That specific generated order
is used in the encoding of the input structure. Another path produces a different order,
and constructs an encoding for that order.

Procedure STEP: This procedure encodes the instructions of the deterministic Tur-
ing machine. SM-PP restrictions of Conjunctive Queries are well-suited for this pur-
pose. Instead of time and tape positions as arguments of binary predicates as in Fagin’s
[13] and Grädel’s [15] proofs, we use coexistence in the same structure with k-tuples
of domain elements, as well as lexicographic successor and predecessor on such tu-
ples.Polynomial time of the computation is guaranteed because time, in the repeat-until
part, is tracked with k-tuples of domain elements.

Procedure END: It checks if the accepting state of the Turing machine is reached.
We have that, for any P-time Turing machine, we can construct term αTM in the

logic L introduced in Definition 5, such that A |=T |αTM〉〉T if and only if the Tur-
ing machine accepts an encoding of A for some specific but arbitrary order of domain
elements on its tape.

9 Conclusion

Motivated by the central quest for a logic for PTIME in Descriptive Complexity, we
have defined a modal logic that can refer back in the executions. The logic is, simulta-
neously, an algebra of binary relations and a modal Dynamic Logic. While the algebraic
operations are rather restrictive, the logic defines the main constructs of Imperative pro-
gramming. Atomic transitions are defined to be a singleton-set restriction of Monadic
Conjuctive Queries. These queries, intuitively, represent non-deterministic conditional
assignments. Together with algebraic terms used as control, this gives us a machine



14 E. Ternovska

model. We have demonstrated that any P-time Turing machine can be simulated in the
logic. Counting properties on unordered structures can be expressed, even though the
logic does not have a special cardinality construct. For example, to count to four, we
guess a new element exactly four times. Another example of a cardinality property is
the query EVEN from Example 6. The logic also expresses reachability type of queries.
For example, to encode s-t-Connectivity of a graph, starting from s, we use an atomic
module to non-deterministically select what edge of the input graph to follow, and re-
peat the process until t is reached. While in general, model checking is in NP, the
s-t-Connectivity encoding can be evaluated in P-time. Moreover, the order in which the
edges of the graph are traversed does not matter.

The next step of this research is to understand under what general syntactic condi-
tions on the terms α of the logic L, evaluating the main query (6), i.e.,

A |=T |α〉〉T

can be done naively, that is, by following one (any) sequence of atomic choices. The
logic for P-time (Definition 2) would be the logic L introduced in Definition 5, plus
these decidable conditions. Identifying these conditions is a highly non-trivial mathe-
matical task that involves a study of an automorphism structure of the formal language
L(α) specified by α. The proposed Dynamic Logic makes algebraic tools for such a
study available.
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1 Introduction

The Hilbert-style axiomatization of PAL is obtained by adding to that of EL the
so called reduction axioms for announcement operators, which can be used to
eliminate announcement operators in a PAL-formula. Generally speaking, it is
difficult to prove whether proof search using a Hilbert-style axiomatization is
decidable. In view of these, many proof systems for PAL are proposed in the lit-
erature, e.g., tableau systems [2], labelled sequent calculi [1, 6]. Here we propose
another labelled sequent calculus for PAL, which is based on a labelled sequent
calculus for EL proposed in Hakli and Negri [3] and rules for announcement oper-
ators designed according to the reduction axioms. This calculus admits structural
rules (including cut) and allows terminating proof search. Moreover, the calcu-
lus is based on the original semantics and takes into account the conditions of
reflexivity, transitivity and symmetry in EL.

2 Labelled sequent calculus for EL and PAL

2.1 EL and PAL

Given a denumerable set Prop of variables and a finite set Ag of agents. Language
LEL for epistemic logic is defined inductively as follows:

L ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | Kaϕ

Language LPAL for public announcement logic is LEL plus the public announce-
ment formula [ϕ]ϕ, where p ∈ Prop and a ∈ Ag. Important definitions of epis-
temic frame, epistemic model, restricted model, model validity and satisfiability
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can be found in [7]. EL is axiomatized by (Tau), (K), (4), (T), (5), (MP) and
(GKa). PAL is axiomatized by the axiomatization for EL plus reduction axioms
(R1–6)[7].

A labelled sequent calculus for a logic with Kripke semantics is based on
the internalization of Kripke semantics. Given an epistemic frame F = (W, {∼a
}a∈Ag), a relational atom is of the form x ∼a y, where x, y ∈ W and a ∈ Ag. A
labelled formula is of the form x : ϕ, where x ∈W and ϕ is an LEL-formula.

Given an epistemic model M = (W, {∼a}a∈Ag, V ), the interpretation τM of
relational atoms and labelled formulas are defined as follows:

τM(x ∼a y) = x ∼a y;

τM(x : ϕ) = M, x 
 ϕ.

Validity of a labelled sequent and a sequent rule R is conventionally defined.

2.2 Labelled sequent calculus GEL for EL

Definition 1 GELconsists of the following initial sequents and rules:
(1) Initial sequents:

x : p, Γ ⇒ ∆,x : p x ∼a y, Γ ⇒ ∆,x ∼a y

(2) Propositional rules:

(¬⇒)
Γ ⇒ ∆,x : ϕ

x : ¬ϕ, Γ ⇒ ∆
(⇒¬)

x : ϕ, Γ ⇒ ∆

Γ ⇒ ∆,x : ¬ϕ

(∧⇒)
x : ϕ1, x : ϕ2, Γ ⇒ ∆

x : ϕ1 ∧ ϕ2, Γ ⇒ ∆
(⇒∧)

Γ ⇒ ∆,x : ϕ1 Γ ⇒ ∆,x : ϕ2

Γ ⇒ ∆,x : ϕ1 ∧ ϕ2

(→⇒)
Γ ⇒ ∆,x : ϕ x : ψ, Γ ⇒ ∆

x : ϕ→ ψ, Γ ⇒ ∆
(⇒→)

x : ϕ, Γ ⇒ ∆,x : ψ

Γ ⇒ ∆,x : ϕ→ ψ

(3) Modal rules:

(Ka ⇒)
y : ϕ, x : Kaϕ, x ∼a y, Γ ⇒ ∆

x : Kaϕ, x ∼a y, Γ ⇒ ∆
(⇒ Ka)

x ∼a y, Γ ⇒ ∆, y : ϕ

Γ ⇒ ∆,x : Kaϕ

where y does not occur in the conclusion of (⇒ Ka), .
(4) Relational rules:

(Refa)
x ∼a x, Γ ⇒ ∆

Γ ⇒ ∆
(Transa)

x ∼a z, x ∼a y, y ∼a z, Γ ⇒ ∆

x ∼a y, y ∼a z, Γ ⇒ ∆

(Syma)
y ∼a x, x ∼a y, Γ ⇒ ∆

x ∼a y, Γ ⇒ ∆

Proposition 2 For any LEL-formula ϕ, GEL ` x : ϕ, Γ ⇒ ∆,x : ϕ.

By proofs similar to those in [5], we have Theorems 3 and 4.
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Theorem 3 Structural rules (w ⇒), (⇒ w), (c⇒), (⇒ c), (cR ⇒) and (⇒ cR)
are height-preserving admissible in GEL. The cut rule (Cut) is admissible in GEL.

(w ⇒)
Γ ⇒ ∆

x : ϕ, Γ ⇒ ∆
(⇒ w)

Γ ⇒ ∆

Γ ⇒ ∆,x : ϕ

(c⇒)
x : ϕ, x : ϕ, Γ ⇒ ∆

x : ϕ, Γ ⇒ ∆
(⇒ c)

Γ ⇒ ∆,x : ϕ, x : ϕ

Γ ⇒ ∆,x : ϕ

(cR ⇒)
x ∼a y, x ∼a y, Γ ⇒ ∆

x ∼a y, Γ ⇒ ∆
(⇒ cR)

Γ ⇒ ∆,x ∼a y, x ∼a y
Γ ⇒ ∆,x ∼a y

(Cut)
Γ ⇒ ∆,x : ϕ x : ϕ, Γ ′ ⇒ ∆′

Γ, Γ ′ ⇒ ∆,∆′

Theorem 4 GEL allows terminating proof search.

2.3 Labelled sequent calculus GPAL for PAL

Definition 5 GPAL is GEL plus the following sequent rules:

(R1⇒)
Γ ⇒ ∆,x : ϕ x : p, Γ ⇒ ∆

x : [ϕ]p, Γ ⇒ ∆
(⇒R1)

x : ϕ, Γ ⇒ ∆,x : p

Γ ⇒ ∆,x : [ϕ]p

(R2⇒)
Γ ⇒ ∆,x : ϕ x : ¬[ϕ]ψ, Γ ⇒ ∆

x : [ϕ]¬ψ, Γ ⇒ ∆
(⇒ R2)

x : ϕ, Γ ⇒ ∆,x : ¬[ϕ]ψ

Γ ⇒ ∆,x : [ϕ]¬ψ

(R3⇒)
x : [ϕ]ψ1, x : [ϕ]ψ2, Γ ⇒ ∆

x : [ϕ](ψ1 ∧ ψ2), Γ ⇒ ∆
(⇒ R3)

Γ ⇒ ∆,x : [ϕ]ψ1 Γ ⇒ ∆,x : [ϕ]ψ2

Γ ⇒ ∆,x : [ϕ](ψ1 ∧ ψ2)

(R4⇒)
Γ ⇒ ∆,x : [ϕ]ψ1 x : [ϕ]ψ2, Γ ⇒ ∆

x : [ϕ](ψ1 → ψ2), Γ ⇒ ∆
(⇒ R4)

x : [ϕ]ψ1, Γ ⇒ ∆,x : [ϕ]ψ2

Γ ⇒ ∆, [ϕ](ψ1 → ψ2)

(R5⇒)
Γ ⇒ ∆,x : ϕ Ka[ϕ]ψ, Γ ⇒ ∆

x : [ϕ]Kaψ, Γ ⇒ ∆
(⇒ R5)

x : ϕ, Γ ⇒ ∆,x : Ka[ϕ]ψ

Γ ⇒ ∆,x : [ϕ]Kaψ

(R6⇒)
x : [ϕ ∧ [ϕ]ψ]χ, Γ ⇒ ∆

x : [ϕ][ψ]χ, Γ ⇒ ∆
(⇒ R6)

Γ ⇒ ∆,x : [ϕ ∧ [ϕ]ψ]χ

Γ ⇒ ∆,x : [ϕ][ψ]χ

Another desirable property for sequent rules is that the complexity of each
premise should be less than that of the conclusion, which can be guaranteed by
the following definition:

Definition 6 Let ϕ be an LPAL formula, The complexity c(ϕ) of ϕ is defined
as follows:

c(p) = 1 c(ϕ→ ψ) = 1 + max {c(ϕ), c(ψ)}
c(¬ϕ) = 1 + c(ϕ) c(Kaϕ) = 1 + c(ϕ)
c(ϕ ∧ ψ) = 1 + max {c(ϕ), c(ψ)} c([ϕ]ψ) = (4 + c(ϕ)) · c(ψ).

Then we have the following lemma:

Lemma 7 For all LPAL-formulas ϕ,ψ and χ:
(1) c([ϕ]p) > c(ϕ→ p);
(2) c([ϕ]¬ψ) > c(ϕ→ ¬[ϕ]ψ);
(3) c([ϕ](ψ ∧ χ)) > c([ϕ]ψ ∧ [ϕ]χ);

(4) c([ϕ]Kaψ) > c(ϕ→ Ka[ϕ]ψ);
(5) c([ϕ][ψ]χ) > c([ϕ ∧ [ϕ]ψ]χ).

Lemma 8 For any LPAL-formula ϕ, GPAL ` x : ϕ, Γ ⇒ ∆,x : ϕ.
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3 Admissibility of some structural rules

In light of the reduction axioms, we can define a translation from LPAL-formulas
to LEL-formulas

Definition 9 The translation t : LPAL → LEL is defined as follows:

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(ϕ→ ψ) = t(ϕ)→ t(ψ)

t(Kaϕ) = Kat(ϕ)

t([ϕ]p) = t(ϕ→ p)

t([ϕ]¬ψ) = t(ϕ→ ¬[ϕ]ψ)

t([ϕ](ψ ∧ χ)) = t([ϕ]ψ ∧ [ϕ]χ)

t([ϕ](ψ → χ)) = t([ϕ]ψ → [ϕ]χ)

t([ϕ]Kaψ) = t(ϕ→ Ka[ϕ]ψ)

t([ϕ][ψ]χ) = t([ϕ ∧ [ϕ]ψ]χ)

Now we extend translation t to relational atoms and labelled LPAL-formulas: for
any relational atom x ∼a y, let t(x ∼a y) = x ∼a y; for any labelled LPAL-
formula x : ϕ, t(x : ϕ) = x : t(ϕ). Moreover, for any set Γ of relational atoms
and labelled formulas: t(Γ ) = {t(σ) | σ ∈ Γ}.

Lemma 10 For any LPAL-sequent x : ϕ, Γ ⇒ ∆, the following hold:

(1) if GPAL ` x : t(ϕ), t(Γ )⇒ t(∆), then GPAL ` x : ϕ, t(Γ )⇒ t(∆);
(2) if GPAL ` t(Γ )⇒ t(∆), x : t(ϕ), then GPAL ` t(Γ )⇒ t(∆), x : ϕ.

The following theorem is a bridge between GPAL and GEL, enabling us to
prove properties of GPAL through GEL.

Theorem 11 For any LPAL-sequent Γ ⇒ ∆,

(1) if GEL ` t(Γ )⇒ t(∆), then GPAL ` Γ ⇒ ∆;
(2) if GPAL `h Γ ⇒ ∆, then GEL `h t(Γ )⇒ t(∆).

Corollary 12 The following structural rules are admissible in GPAL:

(w ⇒)
Γ ⇒ ∆

x : ϕ, Γ ⇒ ∆
(⇒ w)

Γ ⇒ ∆

Γ ⇒ ∆,x : ϕ

(c⇒)
x : ϕ, x : ϕ, Γ ⇒ ∆

x : ϕ, Γ ⇒ ∆
(⇒ c)

Γ ⇒ ∆,x : ϕ, x : ϕ

Γ ⇒ ∆,x : ϕ

(cR ⇒)
x ∼a y, x ∼a y, Γ ⇒ ∆

x ∼a y, Γ ⇒ ∆
(⇒ cR)

Γ ⇒ ∆,x ∼a y, x ∼a y
Γ ⇒ ∆,x ∼a y

(Cut)
Γ ⇒ ∆,x : ϕ x : ϕ, Γ ′ ⇒ ∆′

Γ, Γ ′ ⇒ ∆,∆′

Theorem 13 (Soundness and Completeness) For any LPAL-formula ϕ, ϕ ∈
PAL iff GPAL `⇒ ϕ.

Decidability can be proved conventionally by Theorems 4 and 11 in an indi-
rect way. A direct proof is possible by extending the notion of subformulas and
minimal derivations to exclude the four potential sources of non-terminating
proof search.
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4 Comparison

Existing works on labelled sequent calculi for PAL are based on a reformulation
of the semantics for PAL. The notion of model restriction can be generalized to
a list of formulas. Denote by α / β finite lists (ϕ1, . . . , ϕn) of formulas, and by ε
the empty list. For any list α = (ϕ1, . . . , ϕn) of formulas, Mα is defined recur-
sively as follows: Mα := M (if α = ε), and Mα := (Mβ)ϕn = (W β,ϕn , (∼β,ϕn

a

)a∈Ag, V
β,ϕn) (if α = β, ϕn).

Then an equivalent semantics for PAL is defined as follows:

Mα,ϕ, w 
 p iff Mα, w 
 ϕ and Mα, w 
 p
Mα, w 
 ¬ϕ iff Mα, w 1 ϕ
Mα, w 
 ϕ ∧ ψ iff Mα, w 
 ϕ and Mα, w 
 ψ
Mα, w 
 ϕ→ ψ iff Mα, w 1 ϕ or Mα, w 
 ψ
Mα, w 
 Kaϕ iff for all v ∈W,w ∼αa v implies Mα, v 
 ϕ
Mα, w 
 [ϕ]ψ iff Mα, w 
 ϕ implies Mα,ϕ, w 
 ψ

With this semantics, Balbiani [1] and Nomura et al. [6]developed different
labelled sequent calculi for PAL, fixing the defects in Maffezioli and Negri [4].
The calculus in Balbiani [1] admits cut and allows terminating proof search,
while the calculus in Nomura et al. [6] admits cut. However, unlike ours, their
calculi do not include the inference rules for S5 (i.e., (Refa), (Transa) and
(Syma)). As a result, their calculi are for PAL which is based on the smallest
normal modal logic K. Moreover, our calculus is based on the original semantics
for PAL and uses reduction rules transformed from reduction axioms to deal with
the announcement operators.
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