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Abstract. We investigate dynamic operations acting over a knowing
how logic. Our approach makes use of a recently introduced semantics
for the knowing how operator, based on an indistinguishability relation
between plans. This semantics is arguably closer to the standard pre-
sentation of knowing that modalities in classic epistemic logic. Here, we
discuss how the semantics enables us to define dynamic modalities rep-
resenting different ways in which an agent can learn how to achieve a
goal. In this regard, we study two types of updates: ontic updates (for
which we provide axiomatizations over a particular class of models), and
epistemic updates (for which we investigate some semantic properties).

1 Introduction

Over the last years, a new family of epistemic languages for reasoning about
knowing how assertions [8] have received much attention. Intuitively, an agent
knows how to achieve ϕ given ψ if she has at her disposal a suitable course
of action guaranteeing that ϕ will be the case, whenever she is in a situation
in which ψ holds. The concept of knowing how is important not only from a
philosophical perspective, but also from a computer science point of view. For
instance, it can be seen as a formal account for automated planning and strategic
reasoning in AI (see, e.g., [2]).

Most traditional approaches for representing knowing how rely in connecting
logics of knowing that with logics of action (see, e.g., [22,18,14]). However, while
a combination of operators for knowing that and ability (e.g., [26]) produces a de
dicto concept (“the agent knows she has an action that guarantees the goal”), a
proper notion of “knowing how to achieve ϕ” requires a de re clause (“the agent
has an action that she knows guarantees the goal”; see [15,13] for a discussion).
Based on these considerations, [31,32] introduced a new framework based on a
knowing how binary modality Kh(ψ,ϕ). At the semantic level, this language is
interpreted over relational models — called in this context labeled transition
systems (LTSs). In these models, relations describe the actions an agent has at
her disposal (in some sense, her abilities). Then, Kh(ψ,ϕ) holds if and only if
there is a “proper plan” (a sequence of actions satisfying certain contraints) in
the LTS that unerringly leads from every ψ-state only to ϕ-states.
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While variants of this idea have been explored in the literature (see, for in-
stance, [19,20,9,30]), most of them share a fundamental characteristic: relations
are interpreted as the agent’s available actions; and the abilities of an agent
depend only on what these actions can achieve. The framework presented in [5]
changed this underlying idea by adding a notion of ‘indistinguishability’ between
plans, related to the notion of strategy indistinguishability of, e.g., [16,7]. The
intuitive idea is, first, that some plans might not be available to the agent. More
importantly, she might consider some of them indistinguishable from some oth-
ers. In such cases, having a proper plan σ that leads from any ψ-state to only
ϕ-states is not enough. Instead, the agent also needs for all her available plans
that she cannot distinguish from σ to satisfy such requirements. As argued in [5],
the benefits of these new semantics are threefold. First, it provides an epistemic
‘indistinguishability-based’ view of an agent’s abilities. Second, it enables us to
deal with multi-agent scenarios in a more natural way. Third, this new perspec-
tive leads to a natural definition of operators that represent dynamic aspects of
knowing how, more aligned with dynamic epistemic logic (DEL; [28]).

This paper focuses on the latter point. We will make use of the indistinguisha-
bility-based semantics to investigate some dynamic operators describing changes
in the agents’ abilities, and hence in their corresponding epistemic states. To the
best of our knowledge, this is the first time in which this problem is addressed
(except by the brief discussion introduced in [32] about announcements in the
context of knowing how). We start by investigating operators that restrict the
models based on some sort of announcement, in the spirit of [24]. However, as we
will see, this kind of updates in the context of knowing how can be seen as ontic
updates, rather than epistemic. Then, we will exploit the provided semantics in
order to define operations that perform actual epistemic updates. In particular,
we will discuss how the indistinguishability relation between plans can be refined
in order to perform an epistemic change. We consider our work as the first step
towards a dynamic epistemic theory over knowing how logics.

Outline. The paper is organized as follows. Sec. 2 recalls the syntax, semantics
and a complete axiomatization of the multi-agent knowing how logic from [5],
discussing also a corresponding notion of bisimulation. These notions are useful
in the rest of the paper. Then, Sec. 3 is devoted to investigate different dynamic
operators for updating knowing how. First, we introduce ontic updates, based
on public announcements [24] and arrow updates [17]. We discuss the properties
of the operations, and provide reduction axioms. Then, we provide alternatives
for epistemic updates, and discuss some of their semantic properties. In Sec. 4
we offer some final remarks and discuss future lines of work.

2 Basic Definitions

Throughout the text, let Prop be a countable set of propositional symbols, Act
a denumerable set of action symbols, and Agt a non-empty finite set of agents.

Definition 1. Formulas of the language LKhi are given by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Khi(ϕ,ϕ),
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with p ∈ Prop and i ∈ Agt. Other Boolean connectives are defined as usual.
Formulas of the form Khi(ψ,ϕ) are read as “when ψ is the case, the agent i knows
how to make ϕ true”. Define also Aϕ :=

∨
i∈Agt Khi(¬ϕ,⊥) and Eϕ := ¬A¬ϕ;

they will turn out to be the global universal and existential modalities, resp.

In [31,32], formulas are interpreted over labeled transition systems (LTSs):
relational models in which each (basic) relation indicates the source and target
of a particular type of action the agent can perform. In the setting introduced
in [5], LTSs are extended with a notion of uncertainty between plans.

Definition 2 (Actions and plans). Let Act∗ be the set of finite sequences
over Act. Elements of Act∗ are called plans, with ε being the empty plan. Given
σ ∈ Act∗, let |σ | be the length of σ (note: |ε |:= 0). For 0 ≤ k ≤|σ |, the plan σk
is σ’s initial segment up to (and including) the kth position (with σ0 := ε). For
0 < k ≤|σ |, the action σ[k] is the one in σ’s kth position.

Definition 3 (Uncertainty-based LTS). An uncertainty-based LTS (LTSU)
for Prop, Act and Agt is a tuple M = 〈W,R,S,V〉 where: W is a non-empty set
of states (called the domain, and denoted by DM); R = {Ra ⊆W×W | a ∈ Act}
is a collection of binary relations on W; S = {Si ⊆ 2Act

∗\{∅} | i ∈ Agt} assigns to
every agent a non-empty collection of pairwise disjoint non-empty sets of plans:
(i) Si 6= ∅, (ii) π1,π2 ∈ Si with π1 6= π2 implies π1 ∩ π2 = ∅, and (iii) ∅ /∈ Si;
and V : W→ 2Prop is a labeling function. Given an LTSU M and w ∈ DM, the
pair (M, w) (parenthesis usually dropped) is called a pointed LTSU.

Intuitively, Pi =
⋃

π∈Si π is the set of plans that agent i has at her disposal,
and each π ∈ Si is an indistinguishability class. Note that, as discussed in [5],
there is a one-to-one correspondence between each Si and an ‘indistinguishability
relation’ ∼i ⊆ Pi×Pi describing the agent’s uncertainty over her available plans
(σ1 ∼i σ2 iff there is π ∈ Si such that {σ1, σ2} ⊆ π). The presentation used here
simplifies the definitions that will follow.

Given her uncertainty over Act∗, the abilities of an agent i depend not on
what a single plan can achieve, but rather on what a set of them can guarantee.

Definition 4. Given R = {Ra ⊆ W×W | a ∈ Act} and σ ∈ Act∗, define
Rσ ⊆W×W in the standard way. Then, for π ⊆ Act∗ and U ∪{u} ⊆W, define
Rπ :=

⋃
σ∈π Rσ, Rπ(u) :=

⋃
σ∈π Rσ(u), and Rπ(U) :=

⋃
u∈U Rπ(u).

Definition 5 (Strong executability of plans). Let M = 〈W,R,S,V〉 be
an LTSU, with R = {Ra ⊆ W×W | a ∈ Act}. A plan σ ∈ Act∗ is strongly
executable (SE) at u ∈ W if and only if v ∈ Rσk

(u) implies Rσ[k+1](v) 6= ∅ for

every k ∈ [0 .. |σ | −1]. We define the set SEM(σ) := {w ∈ W | σ is SE at w}.
Then, a set of plans π ⊆ Act∗ is strongly executable at u ∈ W if and only if
every plan σ ∈ π is strongly executable at u. Hence, SEM(π) =

⋂
σ∈π SE(σ) is

the set of the states in W where π is strongly executable.

Thus, a plan is strongly executable (at a state) when all its partial executions
can be completed. Then, a set of plans is strongly executable when all its plans
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are strongly executable. When the model is clear from the context, we will drop
the superscript M and write simply SE(σ) and SE(π).

Now, we have all the ingredients to define the semantics of the logic.

Definition 6. Let M = 〈W,R, {Si}i∈Agt,V〉 be an LTSU; take w ∈ W. The
satisfiability relation |= for LKhi is inductively defined as:

M, w |= p iffdef p ∈ V(w)
M, w |= ¬ϕ iffdef M, w 6|= ϕ
M, w |= ψ ∨ ϕ iffdef M, w |= ψ or M, w |= ϕ
M, w |= Khi(ψ,ϕ) iffdef there is π ∈ Si s.t.

(i) JψKM ⊆ SE(π)
(ii) Rπ(JψKM) ⊆ JϕKM,

where: JχKM := {w ∈W | M, w |= χ}. Define: M |= ϕ iff JϕKM = W, and |= ϕ
iff M |= ϕ, for all LTSU M.

Note: the above-defined modalities A and E are indeed the global modalities
from [11]. Indeed, for every model M and every state w, M, w |= Aϕ holds if
and only if ϕ is true in all states in M [5].

Example 1. Let us consider a simplified scenario for baking a cake, with two
agents i and j. The two agents attempt to produce a good cake (represented by
the propositional symbol g). Suppose that they are following a similar recipe,
and that they have all the ingredientes (h). The recipe states that g is achieved
via the following steps: adding eggs (e), beating the eggs (b), adding flour (f),
adding milk (m), stir (s) and finally, bake the preparation (p). Thus, the plan
needed to achieve g is ebfmsp. Agent i, who is an experienced chef, is aware
that is the way to get a good cake. On the other hand, agent j has no cooking
experience, so she considers that the order in the instructions do not matter.

hM g
e

b

f m

s

p
Si =

{
{ebfmsp}}

}
Sj =

{
{ebfmsp, ebmfsp}

}
The diagram shows, on the right, the set of indistinguishable plans in Si and
in Sj . Notice that agent i knows how to get a good cake, provided that she has
all the ingredients (i.e., M |= Khi(h, g)). This is due to the fact that agent i
distinguishes ebfmsp as the “good plan”. On the other hand, as j considers that
adding milk and adding flour can be done in any order, we haveM 6|= Khj(h, g).

Bisimulations. Bisimulation is a crucial tool for understanding a formal lan-
guage’s expressive power. Here we introduce a generalization of the ideas from [10],
now for LKhi over LTSUs.

Definition 7. Let M = 〈W,R, {Si}i∈Agt,V〉 be an LTSU over Prop, Act and
Agt. Take π ∈ 2(Act

∗), U, T ⊆W and i ∈ Agt.

– Write U
π⇒ T iffdef U ⊆ SE(π) and Rπ(U) ⊆ T .

– Write U
i⇒ T iffdef there is π ∈ Si such that U

π⇒ T .
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Axioms Taut ` ϕ for ϕ a propositional tautology
DistA ` A(ϕ→ ψ)→ (Aϕ→ Aψ)
TA ` Aϕ→ ϕ
4KhA ` Khi(ψ, ϕ)→ AKhi(ψ, ϕ)
5KhA ` ¬Khi(ψ, ϕ)→ A¬Khi(ψ, ϕ)
KhE ` (Eψ ∧ Khi(ψ, ϕ))→ Eϕ
KhA ` (A(χ→ ψ) ∧ Khi(ψ, ϕ) ∧ A(ϕ→ θ))→ Khi(χ, θ)

Rules MP From ` ϕ and ` ϕ→ ψ infer ` ψ
NecA From ` ϕ infer ` Aϕ

Table 1: Axiomatization LKhi
for LKhi

w.r.t. LTSUs.

Additionally, U ⊆ W is propositionally definable in M if and only if there is a
propositional formula ϕ such that U = JϕKM.

Definition 8 (LKhi-bisimulation). Let M = 〈W,R, {Si}i∈Agt,V〉 and M′ =
〈W′,R′, {S′i}i∈Agt,V

′〉 be LTSUs. A non-empty Z ⊆ W×W′ is called an LKhi-
bisimulation betweenM andM′ if and only if wZw′ implies all of the following.

– Atom: V(w) = V′(w′).

– Khi-Zig: for any propositionally definable U ⊆ W, if U
i⇒ T for some

T ⊆W, then there is T ′ ⊆W′ s.t. 1) Z(U)
i⇒ T ′, and 2) T ′ ⊆ Z(T ).

– Khi-Zag: analogous to Khi-Zig.
– A-Zig: for all u ∈W there is a u′ ∈W′ such that uZu′.
– A-Zag: for all u′ ∈W′ there is a u ∈W such that uZu′.

We write M, w↔M′, w′ when there is an LKhi-bisimulation Z between M and
M′ such that wZw′.

Theorem 1. Let M, w and M′, w′ be two LTSUs. M, w ↔ M′, w′ implies
M, w |= ϕ iff M′, w′ |= ϕ, for all LKhi-formula ϕ.

Axiomatization. We finish this section by recalling an axiom system for LKhi .

Theorem 2 ([5]). The axiom system from Table 1 is sound and strongly com-
plete w.r.t. the class of all LTSUs.

3 Dynamic Knowing How Logics

In this section we will explore different ways in which a dynamic operation can
be added to LKhi . We can consider a dynamic operator as the indication of
performing an update on a model, so that the evaluation of the formula should
continue in the modifed model. Some of these model transformations can be
interpreted as actions that affect the agents’ abilities or her epistemic state. In
this section we explore some of these alternatives.

There are at least two ways in which an agent’s information might change. It
might change because the world changes and she observes this (the belief update
of the belief change literature; [12]), and it might change because she receives
information about the world while the world remains the same (the belief revision
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of the belief change literature; [12]). The former can be called ontic change,
whereas the latter can be called epistemic change. Within dynamic epistemic
logic, the first can be represented by a change in valuation, while the second can
be represented by changes in the agents’ uncertainty [27].

In an LTSU M = 〈W,R, {Si}i∈Agt,V〉, there is a clear distinction between
ontic and epistemic information. On the one hand, while R provides ontic, objec-
tive information indicating what the actions themselves can achieve, V describes
the actual propositions being true at each state. On the other hand, the epis-
temic state of an agent i (w.r.t. her knowing how capabilities) is given by her
indistinguishability relation over plans (the set Si at her disposal). Hence, in
what follows we will consider both ontic and epistemic updates.

3.1 Ontic Updates via Public Announcements

Consider first a model operation removing states (and thus updating the rela-
tions). Within the DEL literature, this is interpreted as a public announcement
(PAL; [24]): an epistemic action through which agents get to know publicly that
the announced formula is true. Such an update model operation is described with
the operator [χ], semantically interpreted as

M, w |= [χ]ϕ iff M, w |= χ implies Mχ, w |= ϕ,

with Mχ being the submodel of M that arises from taking JχKM as the new
domain, and with the relations and the valuation restricted accordingly.

In the original knowing how setting from [31], the relations define the agent’s
abilities. Thus, an update corresponds to both an ontic and an epistemic change
(available actions change, and hence so do the agent’s abilities). However, in the
LTSU-based semantics, relations provide only ontic information; thus, an update
operation produces an ontic change, but not an epistemic one.

The update operator adds expressivity to our LKhi (a similar result was es-
tablished in [32] for a Kh modality with intermediate constraints).

Proposition 1. Adding [χ] to LKhi increases its expressive power.

Proof. The two LTSUs M and M′ (with Si = S′i = {{a}}) below are bisimi-
lar and hence indistinguishable in LKhi . However, M, w |= [p]Khi(p, q) whereas
M′, w′ 6|= [p]Khi(p, q). Dashed lines indicate nodes and edges removed after [p].

p, qw

p, q p

M
a

a

a

a

p, qw′

p, q p

M′

a

a

a

A consequence of Prop. 1 is that the modality for PAL-like updates is not re-
ducible to the base logic. This makes sense, as the underlying static logic (LKhi)
only expresses properties relative to the existence of a way to achieve certain tar-
get states from certain origin states. There is no way to characterize the updates
produced by [χ] with the expressive power provided by the Khi modality. This
is in contrast with what happens when these modalities are added to standard
epistemic logic, where reduction axioms can be defined (see, e.g., [28]).
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Is it possible to define an alternative, PAL-like update operator, for which
reduction axioms exists in LKhi? We will answer this question below.

Definition 9. Formulas of the language PALKhi are given by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Khi(ϕ,ϕ) | [!ϕ]ϕ,

with p ∈ Prop and i ∈ Agt.

Definition 10. Let M = 〈W,R,S,V〉 be an LTSU, and let χ be a PALKhi-
formula. We define M!χ = 〈W!χ,R!χ,S!χ,V!χ〉, where:

– W!χ = JχKM,
– (R!χ)a = {(w, v) ∈ Ra | w ∈ JχKM, Ra(w) ⊆ JχKM} for every a ∈ Act,
– S!χ = S, and V!χ(w) = V(w).

We extend the satisfaction relation |= from Def. 6 with the case:

M, w |= [!χ]ϕ iff M, w |= χ implies M!χ, w |= ϕ.

The only difference between theM!χ introduced above and the standardMχ

(which is the restriction of M to the states satisfying χ) is in the definition of
the relations. In the proposal here, a stronger condition is needed for an a-edge
from a state w ∈ JχKM to survive after the update: if Ra(w) 6⊆ JχKM then
(R!χ)a(w) = ∅, but if Ra(w) ⊆ JχKM then (R!χ)a(w) = Ra(w). Notice that in
this context, the elimination of some states indicates that the situations they
describe are no longer reachable, rather than no longer possible.

The two forms of model update discussed above bear a resemblance to the two
forms of updating neighbourhood models from [21]. Recall that a neighbourhood
model [25,23] is given by: a non-empty domain W, an atomic valuation, and a

neighbourhood function N : W → 22
W

, assigning a set of sets of states to each
possible state. Let U ⊆W be a non-empty set of states. On the one hand, the U -
intersection submodel defined in [21] has U as its domain, with its neighbourhood
function built by restricting each set in a neighbourhood to the new domain,
analogous to what Mχ (a standard announcement) does. On the other hand,
the U -subset submodel therein also has U as its domain, but its neighbourhood
function is built by keeping only those sets that are already a subset of the new
domain, analogous to what M!χ does. We argue that this second approach is
more appropriate in the context of knowing how.

Even with this, more restricted, version of update, the resulting logic fails to
have reduction axioms as the following proposition shows.

Proposition 2. PALKhi is more expresive than LKhi over arbitrary LTSUs.

Proof. LetM andM′ the single agent models depicted below (states and edges
depicted with dashed lines are those removed in M!r and M′!r, respectively),
with Si := {{ab}} and S′i := {{a}}:

p, rw

q, r

M

a
b

a
b p, rw′

q, r

M′

a

b
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RAtom ` [!χ]p↔ (χ→ p)
R¬ ` [!χ]¬ϕ↔ (χ→ ¬[!χ]ϕ)
R∨ ` [!χ](ϕ ∨ ψ)↔ [!χ]ϕ ∨ [!χ]ψ
RKh ` [!χ]Khi(ϕ,ψ)↔ (χ→ Khi(χ ∧ [!χ]ϕ, χ ∧ [!χ]ψ))
RE[!] From ` ϕ↔ ψ derive ` [!χ]ϕ↔ [!χ]ψ

Table 2: Reduction axioms LPALKhi
.

Both models are LKhi-bisimilar (Def. 8); hence, they satisfy the same formulas
in LKhi . However, M, w 6|= [!r]Khi(p, q) since M, w |= r and M!r, w 6|= Khi(p, q),
whereas M′, w′ |= [!r]Khi(p, q) since M′, w′ |= r and M′!r, w |= Khi(p, q).

By furthermore restricting the class of models in which we will evaluate
formulas, we are able to obtain reasonable reduction axioms.

Note that LTSUs contain a set Si of sets of plans for each agent i, which
determines the perception of the agent w.r.t. her abilities. For instance, it may
be the case that two plans ab and cd belong to some π ∈ Si, i.e., they are
indistinguishable for agent i. In [5] it has been shown that the logic cannot
distinguish between the class of arbitrary LTSUs, and the class of models where
each π ∈ Si is a singleton with π ⊆ Act. This is no longer the case in the presence
of [!χ] (as the proof of Prop. 2 shows).

Definition 11. Define M1 as the class of models M = 〈W,R,S,V〉 such that
for all i ∈ Agt and π ∈ Si, π ⊆ Act.

M1 constitutes a restricted class of models, which could correspond, for ex-
ample, to a more abstract representation of the abilities of the agents, in which a
course of action is modeled as a single action. The reduction axioms from Table 2
are valid in the class of models M1. Moreover, we can use them to eliminate an-
nouncements by iteratively replacing the innermost occurrence of a [!χ] modality.
Thus, we get completeness for PALKhi .

Theorem 3. LKhi together with the reduction axioms for [!χ] in Table 2 are a
sound and strongly complete axiomatization for PALKhi w.r.t. M1.

3.2 Ontic Updates via Arrow Updates

Another framework for modifying relational models is Arrow Update Logic (AUL;
[17]). It differs from PAL in that it removes only edges, thus keeping the do-
main intact. In standard epistemic logic, this corresponds to changes in uncer-
tainty (e.g., the epistemic indistinguishability might be reduced, so intuitively
the agents gain knowledge). For knowing how logics, the situation is different:
updating edges in an LTS corresponds to updating the abilities of the agents,
as arrows represent execution of actions. We introduce now a logic for arrow
updates in the context of our knowing how logic.

Definition 12. Formulas of the language AULKhi are given by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Khi(ϕ,ϕ) | [U ]ϕ,
U ::= (ϕ,ϕ) | U, (ϕ,ϕ),

with p ∈ Prop and i ∈ Agt.
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RJoin [U ]ϕ↔ [(
∧n

i=1 θi,
∧n

i=1 θ
′
i)]ϕ

RAtom [(θ, θ′)]p↔ p
R¬ [(θ, θ′)]¬ϕ↔ ¬[(θ, θ′)]ϕ
R∨ [(θ, θ′)](ϕ ∨ ψ)↔ [(θ, θ′)]ϕ ∨ [(θ, θ′)]ψ
RKh [(θ, θ′)]Khi(ϕ,ψ)↔ A([(θ, θ′)]ϕ→ θ) ∧ Khi([(θ, θ

′)]ϕ, θ′ ∧ [(θ, θ′)]ψ)
REU From ` ϕ↔ ψ derive ` [(θ, θ′)]ϕ↔ [(θ, θ′)]ψ

Table 3: Reduction axioms LAULKhi
with U = (θ1, θ

′
1), . . . , (θn, θ

′
n).

Definition 13. LetM = 〈W,R,S,V〉 be an LTSU, and U = (θ1, θ
′
1), . . . , (θn, θ

′
n)

be such that θi, θ
′
i are AULKhi-formulas, for all 0 ≤ i ≤ n. We define MU =

〈W,RU ,S,V〉, where for every a ∈ Act,

(RU )a = {(w, v) ∈ Ra(w) | w ∈ J
∧n
i=1 θiK

M, Ra(w) ⊆ J
∧n
i=1 θ

′
iKM}.

Note that if w ∈ J
∧n
i=1 θiK

M and Ra(w) ⊆ J
∧n
i=1 θ

′
iKM, then R′a(w) = Ra(w).

Moreover, R′a(w) 6= ∅ iff w ∈ J
∧n
i=1 θiK

M, Ra(w) ⊆ J
∧n
i=1 θ

′
iKM and Ra(w) 6= ∅.

Once again, the update here differs from the original one in e.g., [17], in that
given a state satisfying the precondition, it takes in consideration all the states
that are reachable from it. Thus, the satisfaction of the postcondition at all those
states defines whether the arrows are preserved or not.

Definition 14. We extend the satisfaction relation |= from Def. 6 with the case:

M, w |= [U ]ϕ iff MU , w |= ϕ.

As in the PAL case, AUL performs ontic updates rather than epistemic up-
dates over LTSU-based knowing how.

Proposition 3. AULKhi is more expressive than LKhi over arbitrary LTSUs.

Proof. By using the models from Prop. 2, we have that M, w 6|= [(r, r)]Khi(p, q)
and M′, w′ |= [(r, r)]Khi(p, q).

Again, the reduction axioms from Table 3 are valid in the class of models
M1, and we can use them to eliminate all the occurrences of the [U ] modality.

Theorem 4. LKhi together with the reduction axioms for [U ] in Table 3 are a
sound and strongly complete axiomatization for AULKhi w.r.t. M1.

3.3 Epistemic Updates, Preliminary Thoughts

In this section we present some preliminary results on different ways in which
interesting epistemic updates can be introduced in the context of a knowing how
operator. No complete axiomatization is available yet. Instead, we will discuss
a number of proposals for update operators and show that they can be used to
express some relevant properties.

Removing uncertainty between two plans. One of the advantages of LTSUs
is that they allow a natural representation of actions that affect the abilities of an
agent, but also her epistemic state. In an LTSU, the crucial epistemic component
is the set Si, defining not only the plans agent i is ‘aware of’, but also the level
at which she can discern among them. Thus we can represent changes in the
epistemic state of an agent by means of operations that modify Si.
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Example 2. Let M be the LTSU from Ex. 1. Recall that M 6|= Khj(h, g). The
conflicting plan is ebmfsp, which does not lead to a good cake. Thus, if agent
j is able to tell apart ebmfsp from ebfmsp (which is the good plan), she would
be able to know how to get a good cake, provided she has the ingredients. If
agent j learns that the order of the actions matters (so ebmfsp is distinct from
ebfmsp), the set π = {ebfmsp, ebmfsp} is split into two singleton sets. After such
a splitting, she knows how to achieve g given h.

We introduce an operation that eliminates uncertainty between specific plans.
In an LTSU, there might be different ways of making distinguishable two previ-
ously indistinguishable plans: the different ways one can split a set containing
both. First, some notation.

Definition 15. Let π,π1,π2 ∈ 2Act
∗
, and S ⊆ 2Act

∗
. We write π = π1 ] π2 iff

π = π1 ∪ π2 and π1 ∩ π2 = ∅.
For π ∈ S and π = π1]π2, define Sπ

{π1,π2} ⊆ 2Act
∗

as the result of refining π

through {π1,π2}: Sπ
{π1,π2} := (S \ {π}) ∪ {π1,π2}.

Definition 16. Let S, S′ ⊆ 2(Act
∗); and let σ1, σ2 ∈ Act∗ be such that σ1 6= σ2.

We write S ;σ1
σ2
S′ if and only if either

– S′ = S and there is no π ∈ S satisfying {σ1, σ2} ⊆ π, or
– S′ = Sπ

{π1,π2} for some π ∈ S satisfying {σ1, σ2} ⊆ π, with π1,π2 ∈ 2Act
∗

such that π = π1 ] π2 and σ1 ∈ π1, σ2 ∈ π2.

Note: the relation ;σ1
σ2

is serial and functional. Moreover, if S is the set of
sets of plans for a given agent i in some LTSU (i.e., S = Si) and S′ is the unique
set satisfying S ;σ1

σ2
S′, then the structure resulting from replacing S by S′ is

an LTSU.

Definition 17. Let M = 〈W,R,S,V〉 be an LTSU, and let S′ = {S′i}i∈Agt with
S′i ⊆ 2(Act

∗). Let σ1, σ2 ∈ Act∗. We write S ;σ1
σ2

S′ iff for each i ∈ Agt, Si ;σ1
σ2

S′i.
We denote by MS

S′ the LTSU obtained by replacing S by S′.

The definition above guarantees there is a one-to-one correspondence be-
tween the sets in S and those in S′. With these tools at hand, we introduce the
new modality 〈σ1 6∼σ2〉, semantically interpreted as an action through which all
agents learn that plans σ1 and σ2 are different. We use LRef (Ref for “refinement”)
to denote the extension of LKhi with 〈σ1 6∼σ2〉.

Definition 18. Let M = 〈W,R,S,V〉 be an LTSU and w ∈W. For σ1 6= σ2,

M, w |= 〈σ1 6∼σ2〉ϕ iffdef there is S′ s.t. S ;σ1
σ2

S′ and MS
S′ , w |= ϕ.

As usual, we define [σ1 6∼σ2]ϕ := ¬〈σ1 6∼σ2〉¬ϕ.

Formulas of the form 〈σ1 6∼σ2〉ϕ can be read as follows: “after it is stated
that plans σ1 and σ2 are distinguishable, ϕ holds”. For instance, taking Ex. 2,
〈ebmfsp 6∼ ebfmsp〉Khj(h, g), establishes that “after it is stated that ebmfsp and
ebfmsp are distinguishable plans, agent j knows how to produce a good cake,
provided she has the ingredientes”.

The proposed modality has some natural properties: it is normal and serial.
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Proposition 4. It follows from the semantics that:

1. |= [σ1 6∼σ2](ϕ→ ψ)→ ([σ1 6∼σ2]ϕ→ [σ1 6∼σ2]ψ).
2. If |= ϕ, then |= [σ1 6∼σ2]ϕ.
3. |= [σ1 6∼σ2]ϕ→ 〈σ1 6∼σ2〉ϕ.

This dynamic modality both preserves knowledge and can generate new one.

Proposition 5. Let ϕ,ψ be propositional formulas. Then,

1. |= Khi(ϕ,ψ)→ [σ1 6∼σ2]Khi(ϕ,ψ).
2. ¬Khi(ϕ,ψ) ∧ [σ1 6∼σ2]Khi(ϕ,ψ) is satisfiable.

Proof. For Item 1, supposeM, w |= Khi(ϕ,ψ). Then there is π ∈ Si s.t. JϕKM ⊆
SE(π) and Rπ(JϕKM) ⊆ JψKM. Let σ1, σ2 ∈ Act∗. If σ1 6∈ π or σ2 6∈ π, then π does
not change and is still the witness for Khi(ϕ,ψ). If, however, σ1, σ2 ∈ π, there will
be a partition of π, {π1,π2} s.t. Si ;σ1

σ2
Siπ{π1,π2}. But this does not cause any

problem since JϕKM ⊆ SE(π) ⊆ SE(πk) and Rπk
(JϕKM) ⊆ Rπ(JϕKM) ⊆ JψKM,

for k ∈ {1, 2}. Here agent i knew how to go from ϕ-states to ψ-states via π.
Weakening such π by making a partition still holds the property, allowing the
agent to choose between π1 or π2 as her next witness. Since all the cases for σ1
and σ2 are covered, M, w |= [σ1 6∼σ2]Khi(ϕ,ψ). For Item 2, see Ex. 2.

The new modality adds expressivity, as it can talk explicitly about plans:

Proposition 6. LRef is more expressive than LKhi .

Proof. We need to display two LKhi-bisimilar LTSUs that can be distinguished
by an LRef -formula. LetM andM′ the single agent models depicted below, with
Si := {{a}} and S′i := {{a, b}}, respectively:

pwM
qa

a

pw′
qa

b

M′

The models are LKhi -bisimilar, thus they satisfy the same formulas in LKhi
(in particular ¬Khi(p, q)). But, M, w 6|= 〈a 6∼ b〉Khi(p, q) since S ;a

b S, whereas
M′, w′ |= 〈a 6∼ b〉Khi(p, q), since there is S′′ = {{a}, {b}} s.t. S′ ;a

b S′′.

Arbitrary refinement over plans. As mentioned, the operation 〈σ1 6∼σ2〉 can
be seen as a particular form of (publicly) removing uncertainty: one indicates
precisely the plans that can be distinguished now, and then quantifies over the
different ways of doing so. The operation defined below is a more abstract one:
in the spirit of other proposals that quantify over epistemic actions (e.g., the
arbitrary announcements of [6], the arbitrary arrow updates of [29], the group
announcements of [1] and the coalition announcements of [3]), it quantifies over
all the different ways in which the agent’s indistinguishability can be refined.

Definition 19. Let M be an LTSU and w ∈ DM. Then,

M, w |= 〈6∼〉ϕ iffdef there are σ1, σ2 ∈ Act∗ s.t. M, w |= 〈σ1 6∼σ2〉ϕ.
As usual [6∼]ϕ = ¬〈6∼〉¬ϕ. We denote LARef (for “arbitrary refinement”) as the
extension of LKhi with the modality 〈6∼〉.
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The resulting modality is normal and serial, satisfies natural properties of
Monotonicity and Weakening, but fails for dynamic versions of axioms 4 and 5.

Proposition 7. It follows from the semantics that:

1. |= [6∼](ϕ→ ψ)→ ([6∼]ϕ→ [6∼]ψ).
2. If |= ϕ, then |= [6∼]ϕ.
3. |= [6∼]ϕ→ 〈6∼〉ϕ.
4. |= 〈6∼〉ϕ→ 〈6∼〉(ϕ ∨ ψ) and |= [6∼]ϕ→ [6∼](ϕ ∨ ψ) (Monotonicity).
5. |= 〈6∼〉(ϕ ∧ ψ)→ 〈6∼〉ϕ and |= [6∼](ϕ ∧ ψ)→ [6∼]ϕ (Weakening).
6. 6|= [6∼]ϕ→ [6∼][6∼]ϕ (axiom 4).
7. 6|= ¬[ 6∼]ϕ→ [ 6∼]¬[6∼]ϕ (axiom 5).

By definition, |= 〈σ1 6∼σ2〉ϕ → 〈6∼〉ϕ, but the exact expressivity relation
between the two resulting logics requires further developments. In particular,
given the mismatch between the two languages (LRef is able to talk about specific
plans whereas LARef is not), it does not seem trivial to give a translation from
one logic to the other. However, by using the same argument as in Prop. 6, it is
easy to show the following:

Proposition 8. LARef is more expressive than LKhi .

Goal directed learning how. One might notice that knowing how operators
are goal-directed : the agent looks for a suitable course of action that makes her
achieve a certain state. It is possible to define an operator that, when possible,
guarantees that the agent learns how to achieve a goal. This action can be
understood as a goal-directed learning how: it looks for a way to split some
existing set of plans π in such a way that the agent knows how to achieve ϕ
given ψ.

Let LLh (for “learning how”) be LKhi extended with the dynamic modality

〈ψ,ϕ〉iχ := 〈6∼〉(Khi(ψ,ϕ) ∧ χ),

(and its ‘dual’ [ψ,ϕ]iχ := ¬〈ψ,ϕ〉i¬χ). Moreover, we define Li(ψ,ϕ) := 〈ψ,ϕ〉i>
an abbreviation for “the agent i can learn how to make ϕ true in the presence
of ψ”. Notice that LLh is a syntactic fragment of LARef .

The new dynamic modality is a ternary modality expressing that the agent
is able to learn how to achieve ϕ given ψ, and that after this learning operation
takes place, χ holds. The modality Li is a test of what is learnable by the agent i.
The next proposition states some interesting properties of these modalities.

Proposition 9. It follows from the semantics that:

1. 6|= Li(ϕ,ψ);
2. Li(ϕ,ψ) ∧ Li(ϕ,¬ψ) is satisfiable.

Proof. Item 1 shows that not everything is learnable by an agent. The (un)avail-
ability of certain actions in an LTSU restricts what can be learnt. Consider the
following single-agent LTSU M, with the set Si shown on the right.

pwM p p, r
a b Si =

{
{ab, a}, {ε}

}
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Note that M, w 6|= Khi(p, r). The set {ab, a} is not executable at every p-state,
it is only executable at w. On the other hand, {ε} is executable everywhere, but
does not lead always to r-states. Moreover,M, w 6|= Li(p, r). The set {ε} cannot
be refined, and no refinement of {ab, a} does the work. Therefore, agent i cannot
learn how to make r true when p holds.

For Item 2 consider the model M′ in Prop. 6. As said, M′, w′ 6|= Khi(p, q).
However, there is a way to learn how to achieve q given p: it is possible to split
the set {a, b} into {a} and {b}; hence, M′, w′ |= Li(p, q) (witness {a}) but also
M′, w′ |= Li(p,¬q) (witness {b}).

Item 1 shows how, in certain scenarios, there is no room for learning. For
instance, there might be no way to learn how to cure a disease, if there is no
doctor available. Item 2 shows how the agent might be able to learn not only
how to make a formula true under a given condition, but, at the same time, how
to make the same formula false under the same condition.

Once more, [χ, ψ] (seen as a unary modality) is a normal modality :

Proposition 10. The modality [χ, ψ] is normal:

1. |= [χ, ψ](θ → ϕ)→ ([χ, ψ]θ → [χ, ψ]ϕ).
2. If |= ϕ, then |= [χ, ψ]ϕ.

We finish the section by stating some expressivity connections between the
dynamic modalities we just discussed.

Proposition 11. The following propositions are true:

1. LLh is more expressive than LKhi .
2. LLh is not more expressive than LRef .

Proof. Item 1 is proved as Prop. 6: the formula 〈p, q〉Kh(p, q) distinghuishes the
two LTSUs. For Item 2 consider the two LTSUs below:

rw

pa

b

M rw′

pc

d

M′

For each model, consider respective sets Si = {{a, b}} and S′i = {{c, d}}. Since
LLh cannot explicitely talk about plans, M, w and M′, w′ are indistinguishable
for it. In LRef , M, w |= 〈a6∼b〉Khi(r, p) and M′, w′ 6|= 〈a6∼b〉Khi(r, p).

4 Conclusions

Taking the uncertainty-based semantics from [5] as our starting point, we in-
vestigated dynamic modalities in the context of knowing how logics. In this
regard, we studied two forms of updates: ontic updates, via annoucement-like
and arrow-update-like modalities; and epistemic updates, refining the perception
of an agent regarding her own abilities. For the operators encompassed in the
former family, we provided axiomatizations over a particular class of models, via
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reductions axioms; for the latter family, we discussed some preliminary thoughts
and semantic properties of each operator.

We consider this to be the first step towards a more general theory of dynamic
epistemic logics for knowing how. Moreover, our work opens the path to study
other dynamic operators in this context. For instance, it is known that dynamic
operators do not satisfy uniform substitution in general (see, e.g., [4]). It would
be interesting to explore alternative techniques for obtaining proof systems with-
out a general rule of substitution. Another approach could be playing with the
operators’ expressivity (e.g., by expressing other properties about the abilities),
in order to find fragments that are axiomatizable via reduction axioms.

Acknowledgments. Our work is supported by ANPCyT-PICT-2020-3780, CO-
NICET project PIP 11220200100812CO, and by the LIA SINFIN.
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3. T. Ågotnes and H. van Ditmarsch. Coalitions and announcements. In 7th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), Volume 2, pages 673–680. IFAAMAS, 2008.

4. C. Areces, R. Fervari, and G. Hoffmann. Relation-changing modal operators. Logic
Journal of the IGPL, 23(4):601–627, 2015.

5. C. Areces, R. Fervari, A. R. Saravia, and F. R. Velázquez-Quesada. Uncertainty-
based semantics for multi-agent knowing how logics. In Proceedings Eighteenth
Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2021,
volume 335 of EPTCS, pages 23–37, 2021.

6. P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, and T. de Lima.
‘Knowable’ as ‘known after an announcement’. Review of Symbolic Logic, 1(3):305–
334, 2008.

7. F. Belardinelli. Reasoning about knowledge and strategies: Epistemic strategy
logic. In Proceedings 2nd International Workshop on Strategic Reasoning, SR 2014,
volume 146 of EPTCS, pages 27–33, 2014.

8. J. Fantl. Knowledge how. In The Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University, spring 2021 edition, 2021.

9. R. Fervari, A. Herzig, Y. Li, and Y. Wang. Strategically knowing how. In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, pages 1031–1038. ijcai.org, 2017.

10. R. Fervari, F. R. Velázquez-Quesada, and Y. Wang. Bisimulations for knowing
how logics. The Review of Symbolic Logic, 15(2):450–486, 2022.

11. V. Goranko and S. Passy. Using the universal modality: Gains and questions.
Journal of Logic and Computation, 2(1):5–30, 1992.

12. S. O. Hansson. Logic of Belief Revision. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2022 edition, 2022.



First Steps in Updating Knowing How 15

13. A. Herzig. Logics of knowledge and action: critical analysis and challenges. Au-
tonomous Agents and Multi Agent Systems, 29(5):719–753, 2015.

14. A. Herzig and N. Troquard. Knowing how to play: uniform choices in logics of
agency. In 5th International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2006), pages 209–216. ACM, 2006.
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Abstract. We consider a syntax and semantics of modal logics based on para-
metrized modal connectives with ∃∀-satisfaction definitions, we axiomatically
introduce different parametrized modal logics, we prove their completeness with
respect to appropriate classes of parametrized relational structures and we show
the decidability of some related satisfiability problems.
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1 Introduction

The connective ♦ of arity 1 usually considered in the propositional modal language
has a ∃-satisfaction definition: in relational models of the form (W,R, V ) where R is
a binary relation on a nonempty set W of possible worlds, V interprets formulas in
such a way that for all formulas ϕ, the possible world s is in V (♦ϕ) exactly when for
some possible world t, sRt and t ∈ V (ϕ). Within the context of temporal reasoning,
the until connective U of arity 2 has been considered in order to increase the expressive
power of the propositional modal language, its ∃∀-satisfaction definition being such
that in models (W,R, V ) as above, for all formulas ϕ,ψ, the possible world s is in
V (ϕUψ) exactly when for some possible world u, sRu, u ∈ V (ψ) and for every pos-
sible world t, if sRt and tRu then t ∈ V (ϕ). As is well-known, the use of the until
connective U of arity 2 allows to characterize more classes of relational structures than
we can characterize in the propositional modal language based on the connective ♦ of
arity 1 [3, Chapter 7]. Moreover, the use of the until connective U has no dramatic con-
sequence on the computational complexity of the satisfiability problem, this problem
being PSPACE-complete in the most popular classes of models usually considered
for applications of temporal reasoning [16, 17].

Therefore, a question naturally arises: without dramatically affecting the computational
complexity of the satisfiability problem, are there other ways to increase the expressive
power of propositional modal languages by considering other connectives with com-
plex satisfaction definitions? Let us consider a propositional modal language based on
a connective ♦ of arity 2. Traditionally, its relational models are of the form (W,R, V )
where R is a ternary relation on a nonempty set W of possible worlds and V interprets
formulas in such a way that for all formulas ϕ,ψ, the possible world s is in V (ϕ♦ψ)
exactly when for some possible world u, u ∈ V (ψ) and for some possible world t,
t ∈ V (ϕ) and sR(t, u). On the pattern of the until connective U and its ∃∀-satisfaction



definition, let us consider a propositional modal language based on a new connective �
of arity 2 and such that in models (W,R, V ) as above, for all formulas ϕ,ψ, the possi-
ble world s is in V (ϕ�ψ) exactly when for some possible world u, u ∈ V (ψ) and for
every possible world t, if t ∈ V (ϕ) then sR(t, u). With such syntax and semantics at
hand, can we characterize more classes of relational structures than we can characterize
in the propositional modal language based on the connective ♦ of arity 2? And what is
the price to pay in terms of the computational complexity of the satisfiability problem?

Obviously, given a ternary relation R on a nonempty set W , we can naturally con-
sider the function R : ℘(W ) −→ ℘(W × W ) such that for all subsets A of W
and for every s, u in W , sR(A)u exactly when for every t in W , if t ∈ A then
sR(t, u). Obviously, the main property of such function is that for all subsets A of
W , R(A) =

⋂
{R({t}) : t ∈ A}. Reciprocally, given a nonempty set W and a

function R : ℘(W ) −→ ℘(W ×W ) satisfying the above property, we can naturally
consider the ternary relation R on W such that for every s, t, u in W , sR(t, u) exactly
when sR({t})u. This suggests us to consider a propositional modal language based
on a connective � of arity 2 and such that in models of the form (W,R, V ) where W
is a nonempty set of possible worlds and R : ℘(W ) −→ ℘(W ×W ) is a function
satisfying the above property, for all formulas ϕ,ψ, the possible world s is in V (ϕ�ψ)
exactly when for some possible world u, u ∈ V (ψ) and sR(V (ϕ))u. In this paper, with
such syntax (Section 2) and semantics (Section 3) at hand, we axiomatically introduce
different modal logics (Section 4), we prove their completeness with respect to appro-
priate classes of relational structures (Sections 5 and 6) and we show the decidability of
some related satisfiability problems (Section 7).

2 Syntax

Let P be a countably infinite set (with typical members denoted p, q, etc). Members
of P will be called atomic formulas. A tip is a set Σ of finite words over the alphabet
P ∪ {⊥,¬,∨,�, (, )} (with typical members denoted ϕ, ψ, etc). Let L be the least tip
such that P ⊆ L and for all finite words ϕ,ψ,

– ⊥ ∈ L,
– if ϕ ∈ L then ¬ϕ ∈ L,
– if ϕ,ψ ∈ L then (ϕ ∨ ψ) ∈ L,
– if ϕ,ψ ∈ L then (ϕ�ψ) ∈ L.

Members of L will be called formulas. The Boolean connectives >, ∧, → and ↔ are
defined as the usual abbreviations. For all ϕ,ψ ∈ L, anticipating the fact that the roles
of ϕ and ψ in (ϕ�ψ) are not symmetric, let (ϕ�ψ) be an abbreviation of ¬(ϕ�¬ψ). We
adopt the standard rules for omission of the parentheses. A tip Σ is readable if Σ ⊆ L.
A readable tip Σ is closed if for all ϕ,ψ ∈ L,

– if ¬ϕ ∈ Σ then ϕ ∈ Σ,
– if ϕ ∨ ψ ∈ Σ then ϕ,ψ ∈ Σ,
– if ϕ�ψ ∈ Σ then ϕ,ψ ∈ Σ.



For all ϕ ∈ L, let Σϕ be the least closed readable tip containing ϕ. For all ϕ ∈ L, let
‖ϕ‖ be the length of ϕ.

Lemma 1. For all ϕ ∈ L, Card(Σϕ) ≤ ‖ϕ‖.

From now on in this paper, for all ϕ,ψ ∈ L, we will write “〈ϕ〉ψ” instead of “ϕ�ψ”
and “[ϕ]ψ” instead of “ϕ�ψ”. For all ϕ ∈ L and for all readable tips Σ, let [ϕ]Σ be the
set of all ψ ∈ L such that [ϕ]ψ ∈ Σ.

3 Relational semantics

A frame is a couple (W,R) whereW is a nonempty set andR : ℘(W ) −→ ℘(W×W ).
A frame (W,R) is conjunctive if for all A ∈ ℘(W ), R(A) =

⋂
{R({s}) : s ∈ A}.

A frame (W,R) is preconjunctive if R(∅) = W × W and for all A,B ∈ ℘(W ),
R(A ∪ B) = R(A) ∩ R(B). A frame (W,R) is paraconjunctive if R(∅) = W ×W
and for all A,B ∈ ℘(W ), if A ⊆ B then R(A) ⊇ R(B). A frame of indiscernibility is
a frame (W,R) such that for all A ∈ ℘(W ), R(A) is an equivalence relation on W .

Lemma 2. Every conjunctive frame is preconjunctive.

Example 1. There exist preconjunctive nonconjunctive frames. For instance, the frame
(W,R) where W = N and for all A ∈ ℘(N), if A is finite then R(A) = N × N else
R(A) = ∅. Obviously, this frame is preconjunctive. However, it is not conjunctive,
seeing that R(N) = ∅ and

⋂
{R({s}) : s ∈ N} = N× N.

Lemma 3. Every preconjunctive frame is paraconjunctive.

Example 2. There exist paraconjunctive nonpreconjunctive frames. For instance, the
frame (W,R) where W = N and for all A ∈ ℘(N), if Card(A) < 2 then R(A) =
N × N else R(A) = ∅. Obviously, this frame is paraconjunctive. However, it is not
preconjunctive, seeing that R({0, 1}) = ∅ and R({0}) ∩R({1}) = N× N.

A valuation on a frame (W,R) is a V : L −→ ℘(W ) such that for all ϕ,ψ ∈ L,

– V (⊥) = ∅,
– V (¬ϕ) =W \ V (ϕ),
– V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),
– V (〈ϕ〉ψ) = {s ∈W : ∃t ∈W (sR(V (ϕ))t & t ∈ V (ψ))}.

A model is a triple consisting of a frame and a valuation on that frame. A model is con-
junctive (resp., preconjunctive, paraconjunctive) if it is based on a conjunctive (resp.,
preconjunctive, paraconjunctive) frame. A model of indiscernibility is a model based on
a frame of indiscernibility.

Example 3. The frame (W,R) where

– W = R2,
– for all A ∈ ℘(R2), R(A) is the binary relation on R2 such that for all s, t ∈ R2,
sR(A)t if and only if for all u ∈ A, d(s, t) ≤ d(s, u) where d : R2 × R2 −→ R+

is the distance function in R2,



is conjunctive. For all valuations V on (W,R) and for all ϕ,ψ ∈ L, if V (ϕ) 6= ∅ then
V (〈ϕ〉ψ) is the set of all s in R2 such that for some t in R2, t is in V (ψ) and the open
disc with center s and radius d(s, t) does not intersect V (ϕ).

Example 4. The frame (W,R) where

– W = R3,
– for all A ∈ ℘(R3), R(A) is the binary relation on R3 such that for all s, t ∈ R3,
sR(A)t if and only if for all u ∈ A, not L(s, t, u) where L ⊆ R3 ×R3 ×R3 is the
collinearity relation in R3,

is conjunctive. For all valuations V on (W,R) and for all ϕ,ψ ∈ L, if V (ϕ) 6= ∅ then
V (〈ϕ〉ψ) is the set of all s in R3 such that for some t in R3, t is in V (ψ) and the line
passing through s and t does not intersect V (ϕ).

The satisfiability problem on a class C of frames is the following decision problem:

input: a formula ϕ,
output: determine whether there exists a model (W,R, V ) based on a frame in C such

that V (ϕ) 6= ∅.

A formula ϕ is true in a model (W,R, V ) (in symbols (W,R, V ) |= ϕ) if V (ϕ) = W .
A formula ϕ is valid on a frame (W,R) (in symbols (W,R) |= ϕ) if for all (W,R)-
valuations V , (W,R, V ) |= ϕ. A formula ϕ is valid on a class C of frames (in symbols
C |= ϕ) if for all frames (W,R) in C, (W,R) |= ϕ.

Example 5. On the class of all paraconjunctive frames, the following formulas are
valid: [⊥]ϕ→ ϕ and 〈⊥〉ϕ→ [⊥]〈⊥〉ϕ.

Example 6. On the class of all paraconjunctive frames, the following formulas are
valid: [⊥](ϕ→ ψ)→ ([ϕ]χ→ [ψ]χ).

Example 7. On the class of all frames of indiscernibility, the following formulas are
valid: [ϕ]ψ → ψ and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

A bounded morphism from a frame (W,R) to a frame (W ′, R′) is a f : W −→ W ′

such that

Forward condition: for all s, t ∈ W and for all A ∈ ℘(W ), if sR(A)t then f(s)
R′(f [A])f(t),

Backward condition: for all s ∈ W , for all t′ ∈ W ′ and for all A ∈ ℘(W ), if
f(s)R′(f [A])t′ then there exists t ∈W such that sR(A)t and f(t) = t′.

Lemma 4. For all frames (W,R) and (W ′, R′) and for all bounded morphisms f from
(W,R) to (W ′, R′), if f is surjective then for all valuations V ′ on (W ′, R′), the V :
L −→ ℘(W ) such that for all ϕ ∈ L, V (ϕ) = f−1[V ′(ϕ)] is a valuation on (W,R).

Lemma 5. For all frames (W,R) and (W ′, R′) and for all bounded morphisms f from
(W,R) to (W ′, R′), if f is surjective then for all formulas ϕ, if (W,R) |= ϕ then
(W ′, R′) |= ϕ.



4 Axiomatizations

A unidimensional parametrized modal logic (UPML) is a set of formulas containing the
following formulas:

(A1) all formulas obtained from propositional tautologies after having uniformly re-
placed their atomic formulas by arbitrary formulas,

(A2) [ϕ](ψ → χ)→ ([ϕ]ψ → [ϕ]χ),

and closed under the following rules:

(R1)
ϕ, ϕ→ψ

ψ ,
(R2)

ϕ
[ψ]ϕ ,

(R3)
ϕ↔ψ

[ϕ]χ↔[ψ]χ .

A UPML is conjunctive if it contains the following formulas:

(A3) [⊥]ϕ→ ϕ, 〈⊥〉ϕ→ [⊥]〈⊥〉ϕ,
(A4) [⊥](ϕ→ ψ)→ ([ϕ]χ→ [ψ]χ).

Let Kg (resp., Kc) be the least UPML (resp., the least conjunctive UPML). Let S5g
(resp., S5c) be the least UPML (resp., the least conjunctive UPML) containing the
following formulas:

(A5) [ϕ]ψ → ψ, 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

For all UPMLs L and for all setsΣ of formulas, let L+Σ be the least UPML containing
L∪Σ. A UPML L is consistent if L 6= L. For all UPMLs L, we will say that a set s of
formulas is L-consistent if for all n ∈ N and for all ϕ1, . . . , ϕn ∈ s, ¬(ϕ1∧ . . .∧ϕn) 6∈
L. Notice that for all consistent UPMLs L, L is a L-consistent set of formulas.

Lemma 6. For all UPMLs L and for all L-consistent sets s of formulas, there exists a
maximal L-consistent set t of formulas such that s ⊆ t.

Lemma 7. For all UPMLs L, for all maximal L-consistent sets s of formulas and for
all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ s then [ϕ]s ∪ {ψ} is a L-consistent set of formulas.

A UPML L is sound with respect to a class C of frames if for all formulas ϕ, if ϕ ∈ L
then C |= ϕ. A UPML L is complete with respect to a class C of frames if for all
formulas ϕ, if C |= ϕ then ϕ ∈ L. The proofs of the soundness statements expressed in
Proposition 1 are as expected.

Proposition 1. In Table 1, the UPMLs listed in the left column are sound with respect
to the corresponding classes of frames listed in the right column.

As for the proofs of the corresponding completeness statements, they are not so obvi-
ous, especially when the considered UPMLs are conjunctive. Indeed, the problem with
conjunctive UPMLs is that the operation of intersection — which is used in conjunctive
frames for the interpretation of the modalities — is not modally definable [1, 15].



UPMLs Classes of frames
Kg All frames
S5g All frames of indiscernibility
Kc All paraconjunctive frames

All preconjunctive frames
All conjunctive frames

S5c All paraconjunctive frames of indiscernibility
All preconjunctive frames of indiscernibility

All conjunctive frames of indiscernibility

Table 1.

5 Completeness: the general case

From now on in this section, we will assume that L is a consistent UPML. Let (Wg, Rg)
be the couple where

– Wg is the set of all maximal L-consistent sets of formulas,
– Rg : ℘(Wg) −→ ℘(Wg×Wg) is such that for allA ∈ ℘(Wg) and for all s, t ∈Wg ,
sRg(A)t if and only if for all formulas ϕ, if ϕ̂ = A then [ϕ]s ⊆ t where ϕ̂ denotes
the set of all u ∈Wg such that ϕ ∈ u.

Lemma 8. For all formulas ϕ,ψ, if ϕ̂ = ψ̂ then ϕ↔ ψ ∈ L.

Since L is a L-consistent set of formulas, by Lemma 6, Wg is nonempty.

Lemma 9. (Wg, Rg) is a frame.

Lemma 10. If L contains S5g then (Wg, Rg) is a frame of indiscernibility.

Let Vg : L −→ ℘(Wg) be such that for all formulas ϕ, Vg(ϕ) = ϕ̂.

Lemma 11 (Truth Lemma: the general case). (Wg, Rg, Vg) is a model.

Proposition 2 is a consequence of Lemmas 6, 9, 10 and 11.

Proposition 2. – Kg is complete with respect to the class of all frames,
– S5g is complete with respect to the class of all frames of indiscernibility.

6 Completeness: the conjunctive case

From now on in this section, we will assume that L is a consistent conjunctive UPML.

Lemma 12. For all maximal L-consistent sets s, t, u of formulas, [⊥]s ⊆ s and if
[⊥]s ⊆ t and [⊥]s ⊆ u then [⊥]t ⊆ u.

Let s0 be a maximal L-consistent set of formulas. Let (Wc, Rc) be the couple where

– Wc is the set of all maximal L-consistent sets s of formulas such that [⊥]s0 ⊆ s,



– Rc : ℘(Wc) −→ ℘(Wc×Wc) is such that for allA ∈ ℘(Wc) and for all s, t ∈Wc,
sRc(A)t if and only if for all formulas ϕ, if ϕ̂ ⊆ A then [ϕ]s ⊆ t where ϕ̂ denotes
the set of all u ∈Wc such that ϕ ∈ u.

Lemma 13. For all formulas ϕ,ψ,

– if ϕ̂ ⊆ ψ̂ then for all s ∈Wc, [⊥](ϕ→ ψ) ∈ s,
– if ϕ̂ = ∅ then for all s, t ∈Wc, [ϕ]s ⊆ t.

Since s0 is a maximal L-consistent set of formulas, by Lemma 12, Wc is nonempty.

Lemma 14. (Wc, Rc) is a paraconjunctive frame.

Lemma 15. If L contains S5c then (Wc, Rc) is a paraconjunctive frame of indiscerni-
bility.

Let Vc : L −→ ℘(Wc) be such that for all formulas ϕ, Vc(ϕ) = ϕ̂.

Lemma 16 (Truth Lemma: the paraconjunctive case). (Wc, Rc, Vc) is a model.

Proposition 3 is a consequence of Lemmas 6, 14, 15 and 16.

Proposition 3. – Kc is complete with respect to the class of all paraconjunctive fra-
mes,

– S5c is complete with respect to the class of all paraconjunctive frames of indis-
cernibility.

Now, let us turn to the completeness of Kc with respect to the class of all preconjunc-
tive frames and the class of all conjunctive frames and the completeness of S5c with
respect to the class of all preconjunctive frames of indiscernibility and the class of all
conjunctive frames of indiscernibility. In this respect, Lemmas 17 and 18 will be our
key results.

Lemma 17. Let (W,R) be a paraconjunctive frame. There exist a conjunctive frame
(W ′, R′) and a surjective bounded morphism from (W ′, R′) to (W,R).

Proof. This proof ends after Claim 6. Let Λ be the set of all τ : ℘(W )×W −→ {0, 1}.
Let (W ′, R′) be the couple where

– W ′ =W × Λ,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all

(s, σ), (t, τ) ∈W ′, (s, σ)R′(A′)(t, τ) if and only if for all A ∈ ℘(W ),
• if A′ ∩ (A × Λ) 6= ∅ then sR(A)t if and only if for all u ∈ A, σ(A, u) =
τ(A, u),
• for all (u, υ) ∈ A′ ∩ (A× Λ), σ(A, u) = τ(A, u).

Claim 1. For all A′ ∈ ℘(W ′), R′(A′) =
⋂
{R′({(u, υ)}) : (u, υ) ∈ A′}.

Proof. Let A′ ∈ ℘(W ′). We demonstrate R′(A′) ⊇
⋂
{R′({(u, υ)}) : (u, υ) ∈ A′},

the “⊆” direction being left as an exercise for the reader. Arguing by contradiction,
suppose R′(A′) 6⊇

⋂
{R′({(u, υ)}) : (u, υ) ∈ A′}. Hence, there exist (s, σ), (t, τ) ∈

W ′ such that not (s, σ)R′(A′)(t, τ) and for all (u, υ) ∈ A′, (s, σ)R′({(u, υ)})(t, τ).
Thus, for all (u, υ) ∈ A′ and for all A ∈ ℘(W ),



– if {(u, υ)} ∩ (A × Λ) 6= ∅ then sR(A)t if and only if for all v ∈ A, σ(A, v) =
τ(A, v),

– for all (v, ω) ∈ {(u, υ)} ∩ (A× Λ), σ(A, v) = τ(A, v).

Consequently, for all A ∈ ℘(W ),

– if A′ ∩ (A× Λ) 6= ∅ then sR(A)t if and only if for all v ∈ A, σ(A, v) = τ(A, v),
– for all (v, ω) ∈ A′ ∩ (A× Λ), σ(A, v) = τ(A, v).

Hence, (s, σ)R′(A′)(t, τ): a contradiction.

Claim 2 is a consequence of Claim 1.

Claim 2. (W ′, R′) is a conjunctive frame.

Let f : W ′ −→W be such that for all (s, σ) ∈W ′, f(s, σ) = s.

Claim 3. f : W ′ −→W is surjective.

Notice that for all A ∈ ℘(W ), f−1[A] = A× Λ.

Claim 4. For all (s, σ), (t, τ) ∈W ′ and for all A′ ∈ ℘(W ′), if (s, σ)R′(A′)(t, τ) then
sR(f [A′])t.

Proof. Let (s, σ), (t, τ) ∈ W ′ and A′ ∈ ℘(W ′). Suppose (s, σ)R′(A′)(t, τ). Arguing
by contradiction, suppose not sR(f [A′])t. Hence, f [A′] 6= ∅. Thus, A′∩ (f [A′]×Λ) 6=
∅. Since (s, σ)R′(A′)(t, τ), sR(f [A′])t if and only if for all v ∈ f [A′], σ(f [A′], v) =
τ(f [A′], v). Moreover, for all (u, υ) ∈ A′ ∩ (f [A′] × Λ), σ(f [A′], u) = τ(f [A′], u).
Consequently, for all u ∈ f [A′], σ(f [A′], u) = τ(f [A′], u). Since sR(f [A′])t if and
only if for all v ∈ f [A′], σ(f [A′], v) = τ(f [A′], v), sR(f [A′])t: a contradiction.

Claim 5. For all (s, σ) ∈ W ′, for all t ∈ W and for all A′ ∈ ℘(W ′), if sR(f [A′])t
then there exists τ ∈ Λ such that (s, σ)R′(A′)(t, τ).

Proof. Let (s, σ) ∈ W ′, t ∈ W and A′ ∈ ℘(W ′). Suppose sR(f [A′])t. We demon-
strate there exists τ ∈ Λ such that (s, σ)R′(A′)(t, τ). Indeed, we are looking for a
τ : ℘(W )×W −→ {0, 1} such that for all B ∈ ℘(W ),

(C1) ifA′∩(B×Λ) 6= ∅ then sR(B)t if and only if for all v ∈ B, σ(B, v) = τ(B, v),
(C2) for all (v, ω) ∈ A′ ∩ (B × Λ), σ(B, v) = τ(B, v).

For all B ∈ ℘(W ), let τB : W −→ {0, 1} be defined as follows:

Case “sR(B)t”: for all v ∈W , let τB(v) = σ(B, v),

Case “not sR(B)t”: let vB ∈ W be such that vB ∈ B and vB 6∈ f [A′] (such vB

exists for otherwise B ⊆ f [A′] and not sR(f [A′])t) and for all v ∈W ,

– if v 6= vB then let τB(v) = σ(B, v),
– otherwise, let τB(v) = 1− σ(B, v).



Let τ : ℘(W ) ×W −→ {0, 1} be such that for all B ∈ ℘(W ) and for all v ∈ W ,
τ(B, v) = τB(v). Now, we just have to verify that for all B ∈ ℘(W ), (C1) and (C2)
hold. Let B ∈ ℘(W ). About (C1), suppose A′ ∩ (B × Λ) 6= ∅ and consider the
following two cases: “sR(B)t” and “not sR(B)t”. In the former case, for all v ∈ W ,
τB(v) = σ(B, v). Hence, for all v ∈ W , σ(B, v) = τ(B, v). Since sR(B)t, (C1)
holds. In the latter case, τB(v) = σ(B, v) for every v ∈W except when v = vB . Thus,
σ(B, v) = τ(B, v) for every v ∈ W except when v = vB . Since not sR(B)t, (C1)
holds. As for (C2), it holds, seeing that for all v ∈ W , if v ∈ B and v ∈ f [A′] then
τB(v) = σ(B, v).

Claim 6 is a consequence of Claims 4 and 5.

Claim 6. f : W ′ −→W is a bounded morphism from (W ′, R′) to (W,R).

Lemma 18. Let (W,R) be a paraconjunctive frame of indiscernibility. There exist a
conjunctive frame of indiscernibility (W ′, R′) and a surjective bounded morphism from
(W ′, R′) to (W,R).

Proof. This proof ends after Claim 12. Let det : ℘(W ) × W × W −→ ℘(W ) be
such that for all A ∈ ℘(W ) and for all s, t ∈ W , det(A, s, t) = [s]R(A) ⊕ [t]R(A)

where [s]R(A) and [t]R(A) are the equivalence classes of s and t modulo R(A) and
⊕ is the operation of symmetric difference in ℘(W ). Notice that for all A ∈ ℘(W )
and for all s, t ∈ W , det(A, s, t) = ∅ if and only if sR(A)t. Let Λ be the set of all
τ : ℘(W ) ×W −→ ℘(W ) such that for all A ∈ ℘(W ), {s ∈ W : τ(A, s) 6= ∅} is
finite. Let (W ′, R′) be the couple where

– W ′ =W × Λ,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all
(s, σ), (t, τ) ∈W ′, (s, σ)R′(A′)(t, τ) if and only if for all A ∈ ℘(W ),
• if A′ ∩ (A × Λ) 6= ∅ then

⊕
{σ(A, u) ⊕ τ(A, u) : u ∈ A} = det(A, s, t)

where
⊕
{σ(A, u)⊕ τ(A, u) : u ∈ A} denotes σ(A, u1)⊕ τ(A, u1)⊕ . . .⊕

σ(A, uN ) ⊕ τ(A, uN ), (u1, . . . , uN ) being the list of all u ∈ A such that
σ(A, u) 6= τ(A, u),

• for all (u, υ) ∈ A′ ∩ (A× Λ), σ(A, u)⊕ τ(A, u) = ∅.

Claim 7. For all A′ ∈ ℘(W ′), R′(A′) =
⋂
{R′({(u, υ)}) : (u, υ) ∈ A′}.

Proof. Let A′ ∈ ℘(W ′). We demonstrate R′(A′) ⊇
⋂
{R′({(u, υ)}) : (u, υ) ∈ A′},

the “⊆” direction being left as an exercise for the reader. Arguing by contradiction,
suppose R′(A′) 6⊇

⋂
{R′({(u, υ)}) : (u, υ) ∈ A′}. Hence, there exist (s, σ), (t, τ) ∈

W ′ such that not (s, σ)R′(A′)(t, τ) and for all (u, υ) ∈ A′, (s, σ)R′({(u, υ)})(t, τ).
Thus, for all (u, υ) ∈ A′ and for all A ∈ ℘(W ),

– if {(u, υ)} ∩ (A× Λ) 6= ∅ then
⊕
{σ(A, v)⊕ τ(A, v) : v ∈ A} = det(A, s, t),

– for all (v, ω) ∈ {(u, υ)} ∩ (A× Λ), σ(A, v)⊕ τ(A, v) = ∅.

Consequently, for all A ∈ ℘(W ),

– if A′ ∩ (A× Λ) 6= ∅ then
⊕
{σ(A, v)⊕ τ(A, v) : v ∈ A} = det(A, s, t),



– for all (v, ω) ∈ A′ ∩ (A× Λ), σ(A, v)⊕ τ(A, v) = ∅.

Hence, (s, σ)R′(A′)(t, τ): a contradiction.

Claim 8 is a consequence of Claim 7 and of the fact that for all A ∈ ℘(W ) and for all
s, t, u ∈W , det(A, s, s) = ∅ and det(A, s, t)⊕ det(A, s, u) = det(A, t, u).

Claim 8. (W ′, R′) is a conjunctive frame of indiscernibility.

Let f : W ′ −→W be such that for all (s, σ) ∈W ′, f(s, σ) = s.

Claim 9. f : W ′ −→W is surjective.

Notice that for all A ∈ ℘(W ), f−1[A] = A× Λ.

Claim 10. For all (s, σ), (t, τ) ∈ W ′ and for all A′ ∈ ℘(W ′), if (s, σ)R′(A′)(t, τ)
then sR(f [A′])t.

Proof. Let (s, σ), (t, τ) ∈ W ′ and A′ ∈ ℘(W ′). Suppose (s, σ)R′(A′)(t, τ). Arguing
by contradiction, suppose not sR(f [A′])t. Hence, f [A′] 6= ∅. Thus, A′ ∩ (f [A′] ×
Λ) 6= ∅. Since (s, σ)R′(A′)(t, τ),

⊕
{σ(f [A′], u) ⊕ τ(f [A′], u) : u ∈ f [A′]} =

det(f [A′], s, t). Moreover, for all (u, υ) ∈ A′∩(f [A′]×Λ), σ(f [A′], u)⊕τ(f [A′], u) =
∅. Consequently, for all u ∈ f [A′], σ(f [A′], u)⊕ τ(f [A′], u) = ∅. Hence,

⊕
{σ(f [A′],

u)⊕τ(f [A′], u) : u ∈ f [A′]} = ∅. Since
⊕
{σ(f [A′], u)⊕τ(f [A′], u) : u ∈ f [A′]} =

det(f [A′], s, t), det(f [A′], s, t) = ∅. Thus, sR(f [A′])t: a contradiction.

Claim 11. For all (s, σ) ∈ W ′, for all t ∈ W and for all A′ ∈ ℘(W ′), if sR(f [A′])t
then there exists τ ∈ Λ such that (s, σ)R′(A′)(t, τ).

Proof. Let (s, σ) ∈ W ′, t ∈ W and A′ ∈ ℘(W ′). Suppose sR(f [A′])t. We demon-
strate there exists τ ∈ Λ such that (s, σ)R′(A′)(t, τ). Indeed, we are looking for a
τ : ℘(W )×W −→ ℘(W ) such that for all B ∈ ℘(W ),

(C0) {u ∈W : τ(B, u) 6= ∅} is finite,
(C1) if A′ ∩ (B × Λ) 6= ∅ then

⊕
{σ(B, u)⊕ τ(B, u) : u ∈ B} = det(B, s, t),

(C2) for all (v, ω) ∈ A′ ∩ (B × Λ), σ(B, v)⊕ τ(B, v) = ∅.

For all B ∈ ℘(W ), let τB : W −→ ℘(W ) be defined as follows:

Case “B ⊆ f [A′]”: for all v ∈W , let τB(v) = σ(B, v),

Case “B 6⊆ f [A′]”: let vB ∈ W be such that vB ∈ B and vB 6∈ f [A′] and for all
v ∈W ,

– if v 6= vB then let τB(v) = σ(B, v),
– otherwise, let τB(v) = σ(B, v)⊕ det(B, s, t).

Let τ : ℘(W ) × W −→ ℘(W ) be such that for all B ∈ ℘(W ) and for all v ∈
W , τ(B, v) = τB(v). Now, we just have to verify that for all B ∈ ℘(W ), (C0),
(C1) and (C2) hold. Let B ∈ ℘(W ). Concerning (C0), it holds, seeing that τB(v) =
σ(B, v) for every v ∈ W except when B 6⊆ f [A′] and v = vB . About (C1), suppose



A′∩(B×Λ) 6= ∅ and consider the following two cases: “B ⊆ f [A′]” and “B 6⊆ f [A′]”.
In the former case, since sR(f [A′])t, sR(B)t. Hence, det(B, s, t) = ∅. Since B ⊆
f [A′], for all v ∈ W , τB(v) = σ(B, v). Thus, for all w ∈ W , σ(B, v)⊕ τ(B, v) = ∅.
Consequently,

⊕
{σ(B, v) ⊕ τ(B, v) : v ∈ B} = ∅. Since det(B, s, t) = ∅, (C1)

holds. In the latter case, τB(v) = σ(B, v) for every v ∈ W except when v = vB .
Hence,

⊕
{σ(B, v) ⊕ τ(B, v) : v ∈ B} = σ(B, vB) ⊕ τ(B, vB). Since τB(vB) =

σ(B, vB) ⊕ det(B, s, t), (C1) holds. As for (C2), it holds, seeing that for all v ∈ W ,
if v ∈ B and v ∈ f [A′] then τB(v) = σ(B, v).

Claim 12 is a consequence of Claims 10 and 11.

Claim 12. f : W ′ −→W is a bounded morphism from (W ′, R′) to (W,R).

Proposition 4 is a consequence of Lemmas 5, 17 and 18 and Proposition 3.

Proposition 4. – Kc is complete with respect to the class of all preconjunctive fra-
mes and the class of all conjunctive frames,

– S5c is complete with respect to the class of all preconjunctive frames of indiscerni-
bility and the class of all conjunctive frames of indiscernibility.

7 Filtrations

The equivalence setting determined by a model (W,R, V ) and a closed set Σ of formu-
las is the equivalence relation ./ on W defined by

– s ./ t if and only if for all formulas ϕ in Σ, s ∈ V (ϕ) if and only if t ∈ V (ϕ).

For all models (W,R, V ), for all closed sets Σ of formulas and for all s ∈ W , the
equivalence class of s modulo ./ will be denoted [s]. For all models (W,R, V ), for all
closed sets Σ of formulas and for all A ∈ ℘(W ), the quotient of A modulo ./ will be
denoted A/./. A model (W ′, R′, V ′) is a filtration of a model (W,R, V ) with respect
to a closed set Σ of formulas if

– W ′ =W/./,
– for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈W ,
• if sR(V (ϕ))t then [s]R′(V (ϕ)/./)[t],
• if [s]R′(V (ϕ)/./)[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ),

– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/./.

Lemma 19. If the model (W ′, R′, V ′) is a filtration of the model (W,R, V ) with res-
pect to a closed set Σ of formulas then for all formulas ϕ, if ϕ ∈ Σ then V ′(ϕ) =
V (ϕ)/./.

Now, let us turn to the decidability of the satisfiability problem on the class of all frames,
the class of all frames of indiscernibility, the class of all conjunctive frames and the class
of all conjunctive frames of indiscernibility. In this respect, Lemmas 20–23 will be our
key results.



Lemma 20. Let Σ be a closed set of formulas and (W,R, V ) be a model. There exists
a model (W ′, R′, V ′) such that (W ′, R′, V ′) is a filtration of (W,R, V ) with respect to
Σ.

Proof. This proof ends after Claim 14. Let (W ′, R′, V ′) be a model such that

– W ′ =W/./,
– R′ : ℘(W ′) −→ ℘(W ′×W ′) is such that for allA′ ∈ ℘(W ′) and for all s, t ∈W ,

[s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/./ = A′

then there exist u, v ∈W such that s ./ u, t ./ v and uR(V (ϕ))v,
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/./.

Claim 13. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈W , if sR(V (ϕ))t then
[s]R′(V (ϕ)/./)[t].

Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W , if
sR(V (ϕ))t then [s]R′(V (ϕ)/./)[t]. Let s, t ∈ W . Suppose sR(V (ϕ))t. We demon-
strate [s]R′(V (ϕ)/./)[t]. Arguing by contradiction, suppose not [s]R′(V (ϕ)/./)[t].
Hence, there exist formulas ϕ′, ψ′ such that 〈ϕ′〉ψ′ ∈ Σ, V (ϕ′)/./ = V (ϕ)/./ and
for all u, v ∈ W , if s ./ u and t ./ v then not uR(V (ϕ′))v. Thus, V (ϕ′) = V (ϕ).
Moreover, not sR(V (ϕ′))t. Consequently, not sR(V (ϕ))t: a contradiction.

Claim 14. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈W , if [s]R′(V (ϕ)/./)
[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ).

Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W ,
if [s]R′(V (ϕ)/./)[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ). Let s, t ∈ W . Suppose
[s]R′(V (ϕ)/./)[t] and t ∈ V (ψ). We demonstrate s ∈ V (〈ϕ〉ψ). Since [s]R′(V (ϕ)/./)
[t], there exist u, v ∈ W such that s ./ u, t ./ v and uR(V (ϕ))v. Since t ∈ V (ψ),
v ∈ V (ψ). Since uR(V (ϕ))v, u ∈ V (〈ϕ〉ψ). Since s ./ u, s ∈ V (〈ϕ〉ψ).

Lemma 21. Let Σ be a closed set of formulas and (W,R, V ) be a model of indiscerni-
bility. There exists a model (W ′, R′, V ′) of indiscernibility such that (W ′, R′, V ′) is a
filtration of (W,R, V ) with respect to Σ.

Proof. This proof ends after Claim 16. Let (W ′, R′, V ′) be a model of indiscernibility
such that

– W ′ =W/./,
– R′ : ℘(W ′) −→ ℘(W ′×W ′) is such that for allA′ ∈ ℘(W ′) and for all s, t ∈W ,
[s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/./ = A′

then s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ),
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/./.

Claim 15. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈W , if sR(V (ϕ))t then
[s]R′(V (ϕ)/./)[t].



Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W , if
sR(V (ϕ))t then [s]R′(V (ϕ)/./)[t]. Let s, t ∈ W . Suppose sR(V (ϕ))t. We demon-
strate [s]R′(V (ϕ)/./)[t]. Arguing by contradiction, suppose not [s]R′(V (ϕ)/./)[t].
Hence, there exist formulas ϕ′, ψ′ such that 〈ϕ′〉ψ′ ∈ Σ, V (ϕ′)/./ = V (ϕ)/./ and
either s ∈ V (〈ϕ′〉ψ′) and t 6∈ V (〈ϕ′〉ψ′), or s 6∈ V (〈ϕ′〉ψ′) and t ∈ V (〈ϕ′〉ψ′). With-
out loss of generality, suppose s ∈ V (〈ϕ′〉ψ′) and t 6∈ V (〈ϕ′〉ψ′). Thus, there exists
u ∈ W such that sR(V (ϕ′))u and u ∈ V (ψ′). Since V (ϕ′)/./ = V (ϕ)/./, V (ϕ′) =
V (ϕ). Since t 6∈ V (〈ϕ′〉ψ′) and u ∈ V (ψ′), not tR(V (ϕ′))u. Since sR(V (ϕ′))u, not
sR(V (ϕ′))t. Since V (ϕ′) = V (ϕ), not sR(V (ϕ))t: a contradiction.

Claim 16. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈W , if [s]R′(V (ϕ)/./)
[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ).

Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W ,
if [s]R′(V (ϕ)/./)[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ). Let s, t ∈ W . Suppose
[s]R′(V (ϕ)/./)[t] and t ∈ V (ψ). We demonstrate s ∈ V (〈ϕ〉ψ). Since [s]R′(V (ϕ)/./)
[t], s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ). Since t ∈ V (ψ), t ∈ V (〈ϕ〉ψ). Since
s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ), s ∈ V (〈ϕ〉ψ).

Lemma 22. Let Σ be a closed set of formulas and (W,R, V ) be a paraconjunctive
model. There exists a paraconjunctive model (W ′, R′, V ′) such that (W ′, R′, V ′) is a
filtration of (W,R, V ) with respect to Σ.

Proof. Let (W ′, R′, V ′) be a model such that

– W ′ =W/./,
– R′ : ℘(W ′) −→ ℘(W ′×W ′) is such that for allA′ ∈ ℘(W ′) and for all s, t ∈W ,
[s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/./ ⊆ A′

then there exist u, v ∈W such that s ./ u, t ./ v and uR(V (ϕ))v,
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/./.

Now, the rest of the proof is similar to the corresponding rest of the proof of Lemma 20,
the main difference being that one has to verify here that (W ′, R′, V ′) is a paraconjunc-
tive model, an exercise that we leave for the reader.

Lemma 23. Let Σ be a closed set of formulas and (W,R, V ) be a paraconjunctive
model of indiscernibility. There exists a paraconjunctive model (W ′, R′, V ′) of indis-
cernibility such that (W ′, R′, V ′) is a filtration of (W,R, V ) with respect to Σ.

Proof. Let (W ′, R′, V ′) be a model of indiscernibility such that

– W ′ =W/./,
– R′ : ℘(W ′) −→ ℘(W ′×W ′) is such that for allA′ ∈ ℘(W ′) and for all s, t ∈W ,
[s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/./ ⊆ A′

then s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ),
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/./.

Now, the rest of the proof is similar to the corresponding rest of the proof of Lemma 21,
the main difference being that one has to verify here that (W ′, R′, V ′) is a paraconjunc-
tive model, an exercise that we leave for the reader.



Proposition 5 is a consequence of [3, Theorem 6.7] and Lemmas 5, 17, 18 and 20–23.

Proposition 5. The satisfiability problem is decidable on the following classes of fra-
mes:

– the class of all frames,
– the class of all frames of indiscernibility,
– the class of all conjunctive frames,
– the class of all conjunctive frames of indiscernibility.

Conjecture 1. We believe the satisfiability problem is PSPACE-complete on the
class of all frames and the class of all frames of indiscernibility. We believe as well
the satisfiability problem is EXPTIME-complete on the class of all conjunctive fra-
mes and the class of all conjunctive frames of indiscernibility.

8 Conclusion

What has been done in this paper? Firstly, we have introduced the syntax and the se-
mantics of a new family of modal logics: UPMLs (Sections 2 and 3). Secondly, we have
axiomatically introduced different UPMLs (Section 4). Thirdly, we have proved their
completeness with respect to appropriate classes of relational structures (Sections 5
and 6). In this respect, we have seen that the operation of intersection — which is used
in conjunctive frames for the interpretation of the modalities — being not modally de-
finable, our proofs of completeness are not so obvious when the considered UPMLs
are conjunctive. Fourthly, we have shown the decidability of some related satisfiability
problems (Section 7).

Much remains to be done. For instance,

– to import first-order ideas into conjunctive UPMLs (constructs of hybrid logics [2,
7], the difference operator [3, Section 7.1], etc),

– to develop the model theory of conjunctive UPMLs (classical definition of bisimu-
lations [3, Section 2.2], classical definition of saturated models [3, Section 2.6],
etc),

– to elaborate the correspondence theory of conjunctive UPMLs (analogue of Sahlq-
vist Correspondence Theorem [3, Section 3.6], analogues of Chagrova’s Theo-
rems [4, 6], etc),

– to investigate the computability of the satisfiability problem in such-and-such class
of conjunctive frames and develop automatic procedures for solving it (filtration
method [5, Chapter 5], tableaux-based approach [12], etc),

– to compare conjunctive UPMLs with other forms of modal logics based on para-
metrized connectives (knowledge representation logics [8, 14, 18], Boolean modal
logic [10, 11], etc),

– to construct the duality theory of conjunctive UPMLs (standard definition of Boo-
lean algebras with operators [13, Section 2.2], standard definition of general fra-
mes [13, Section 4.6], etc).



Other avenues of research might consist in considering that frames are couples of the
form (X, τ) where X is a nonempty set and τ : ℘(X) −→ ℘(℘(X)) is such that for
all A ∈ ℘(X), τ(A) is a topology on X . In that case, a valuation on a frame (X, τ)
will be a V : L −→ ℘(X) such that V (〈ϕ〉ψ) = {s ∈ X : ∀O ∈ τ(V (ϕ)) (s ∈
O ⇒ O ∩ V (ψ) 6= ∅)} among other conditions. Further investigations are needed for
obtaining the UPML that will completely axiomatize the validities thus defined.
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Appendix

This Appendix includes the proofs of some of our results. Most of these proofs are rel-
atively simple and we have included them here just for the sake of the completeness.

Proof of Lemma 4. Similar to the proof of Bounded Morphism Lemma [3, Proposi-
tion 2.14].

Proof of Lemma 5. Consequence of Lemma 4.

Proof of Lemma 6. Similar to the proof of Lindenbaum’s Lemma [5, Lemma 5.1].

Proof of Lemma 7. Similar to the proof of Existence Lemma [13, Proposition 2.8.4].

Proof of Lemma 8. Consequence of Lemma 6.

Proof of Lemma 10. Consequence of the fact that S5g contains all formulas of the
form [ϕ]ψ → ψ and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

Proof of Lemma 11. The proof that Vg satisfies the conditions for ⊥, ¬ and ∨ is as
expected. We only show that Vg satisfies the condition for 〈·〉. Let ϕ,ψ be a formulas.
Let s ∈ Wg . We only demonstrate s ∈ Vg(〈ϕ〉ψ) only if there exists t ∈ Wg such that
sRg(Vg(ϕ))t and t ∈ Vg(ψ), the “if” direction being left as an exercise for the reader.
Suppose s ∈ Vg(〈ϕ〉ψ). We demonstrate there exists t ∈ Wg such that sRg(Vg(ϕ))t
and t ∈ Vg(ψ). Since s ∈ Vg(〈ϕ〉ψ), 〈ϕ〉ψ ∈ s. Let t0 = [ϕ]s ∪ {ψ}. Notice that
[ϕ]s ⊆ t0 and ψ ∈ t0. By Lemma 7, t0 is a L-consistent set of formulas. Hence, by
Lemma 6, let t be a maximal L-consistent set of formulas such that t0 ⊆ t. Since
[ϕ]s ⊆ t0 and ψ ∈ t0, [ϕ]s ⊆ t and ψ ∈ t. Thus, t ∈ Vg(ψ).

Claim. sRg(Vg(ϕ))t.

Proof. We demonstrate for all formulas ϕ′, if ϕ̂′ = Vg(ϕ) then [ϕ′]s ⊆ t. Let ϕ′ be
a formula. Suppose ϕ̂′ = Vg(ϕ). We demonstrate [ϕ′]s ⊆ t. Let ψ′ be a formula. Sup-
pose [ϕ′]ψ′ ∈ s. We demonstrate ψ′ ∈ t. Since ϕ̂′ = Vg(ϕ), by Lemma 8, ϕ′ ↔ ϕ ∈ L.
Hence, [ϕ′]ψ′ ↔ [ϕ]ψ′ ∈ L. Since [ϕ′]ψ′ ∈ s, [ϕ]ψ′ ∈ s. Since [ϕ]s ⊆ t, ψ′ ∈ t.

Proof of Lemma 12. Consequence of the fact that L contains all formulas of the form
[⊥]ϕ→ ϕ and 〈⊥〉ϕ→ [⊥]〈⊥〉ϕ.

Proof of Lemma 13. Let ϕ,ψ be formulas.

Suppose ϕ̂ ⊆ ψ̂. We demonstrate for all s ∈ Wc, [⊥](ϕ → ψ) ∈ s. Let s ∈ Wc.
We demonstrate [⊥](ϕ→ ψ) ∈ s. Arguing by contradiction, suppose [⊥](ϕ→ ψ) 6∈ s.
Hence, 〈⊥〉(ϕ ∧ ¬ψ) ∈ s. Let u0 = [⊥]s ∪ {ϕ,¬ψ}. Notice that [⊥]s ⊆ u0, ϕ ∈ u0
and ¬ψ ∈ u0. By Lemma 7, u0 is a L-consistent set of formulas. Thus, by Lemma 6,
let u be a maximal L-consistent set of formulas such that u0 ⊆ u. Since [⊥]s ⊆ u0,



ϕ ∈ u0 and ¬ψ ∈ u0, [⊥]s ⊆ u, ϕ ∈ u and ¬ψ ∈ u. Since [⊥]s0 ⊆ s, by Lemma 12,
[⊥]s0 ⊆ u. Consequently, u ∈ Wc. Since ϕ ∈ u and ¬ψ ∈ u, u ∈ ϕ̂ and ψ 6∈ u. Since
ϕ̂ ⊆ ψ̂, u ∈ ψ̂. Hence, ψ ∈ u: a contradiction.

Suppose ϕ̂ = ∅. We demonstrate for all s, t ∈ Wc, [ϕ]s ⊆ t. Let s, t ∈ Wc. We
demonstrate [ϕ]s ⊆ t. Let χ be a formula. Suppose [ϕ]χ ∈ s. We demonstrate χ ∈ t.
Since ϕ̂ = ∅, by the previous item, [⊥](ϕ → ⊥) ∈ s. Thus, [ϕ]χ → [⊥]χ ∈ s. Since
[ϕ]χ ∈ s, [⊥]χ ∈ s. Since [⊥]s0 ⊆ s, 〈⊥〉[⊥]χ ∈ s0. Consequently, [⊥]χ ∈ s0. Since
[⊥]s0 ⊆ t, χ ∈ t.

Proof of Lemma 14. Indeed, Rc(∅) =Wc×Wc. Why? Simply because by Lemma 13,
for all s, t ∈Wc and for all formulas ϕ, if ϕ̂ = ∅ then [ϕ]s ⊆ t. Hence, for all s, t ∈Wc,
sRc(∅)t. Moreover, for allA,B ∈ ℘(Wc), ifA ⊆ B thenRc(A) ⊇ Rc(B). Why? Sim-
ply because for all A,B ∈ ℘(Wc), if A ⊆ B then for all formulas ϕ, if ϕ̂ ⊆ A then
ϕ̂ ⊆ B. Thus, for all A,B ∈ ℘(Wc), if A ⊆ B then for all t, u ∈ Wc, if tRc(B)u then
tRc(A)u.

Proof of Lemma 15. Consequence of the fact that S5c contains all formulas of the
form [ϕ]ψ → ψ and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

Proof of Lemma 16. The proof that Vc satisfies the conditions for ⊥, ¬ and ∨ is as
expected. We only show that Vc satisfies the condition for 〈·〉. Let ϕ,ψ be formulas.
Let s ∈ Wc. We only demonstrate s ∈ Vc(〈ϕ〉ψ) only if there exists t ∈ Wc such that
sRc(Vc(ϕ))t and t ∈ Vc(ψ), the “if” direction being left as an exercise for the reader.
Suppose s ∈ Vc(〈ϕ〉ψ). We demonstrate there exists t ∈Wc such that sRc(Vc(ϕ))t and
t ∈ Vc(ψ). Since s ∈ Vc(〈ϕ〉ψ), 〈ϕ〉ψ ∈ s. Let t0 = [ϕ]s ∪ {ψ}. Notice that [ϕ]s ⊆ t0
and ψ ∈ t0. By Lemma 7, t0 is a L-consistent set of formulas. Hence, by Lemma 6,
let t be a maximal L-consistent set of formulas such that t0 ⊆ t. Since [ϕ]s ⊆ t0 and
ψ ∈ t0, [ϕ]s ⊆ t and ψ ∈ t. Thus, t ∈ Vc(ψ).

Claim. sRc(Vc(ϕ))t.

Proof. We demonstrate for all formulas ϕ′, if ϕ̂′ ⊆ Vc(ϕ) then [ϕ′]s ⊆ t. Let ϕ′ be
a formula. Suppose ϕ̂′ ⊆ Vc(ϕ). We demonstrate [ϕ′]s ⊆ t. Let ψ′ be a formula.
Suppose [ϕ′]ψ′ ∈ s. We demonstrate ψ′ ∈ t. Since ϕ̂′ ⊆ Vc(ϕ), by Lemma 13,
[⊥](ϕ′ → ϕ) ∈ s. Hence, [ϕ′]ψ′ → [ϕ]ψ′ ∈ s. Since [ϕ′]ψ′ ∈ s, [ϕ]ψ′ ∈ s. Since
[ϕ]s ⊆ t, ψ′ ∈ t.

Proof of Lemma 19. Similar to the proof of Filtration Theorem [3, Theorem 2.39].
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Abstract. This paper explores a strict relation between two core no-
tions of the semantics of programs and of fuzzy logics: Kleene Algebras
and (pseudo) uninorms. It shows that every Kleene algebra induces a
pseudo uninorm, and that some pseudo uninorms induce Kleene alge-
bras. This connection establishes a new perspective on the theory of
Kleene algebras and provides a way to build (new) Kleene algebras. The
latter aspect is potentially useful as a source of formalism to capture and
model programs acting with fuzzy behaviours and domains.

1 Introduction

The adoption of algebraic structures and techniques to model and reason about
programs has a long tradition in Computer Science, and is the basis of some
of its main pillars, including Process Algebra and Abstract Data Types Spec-
ification. In particular, Algebras of Programs, coming from regular languages
and automata theory, have been widely considered as suitable frameworks to
support the rigorous semantics for analysis of algorithms and the design and de-
velopment of complex systems. On the basis of this field is the notion of Kleene
Algebra [14], today accepted as the standard abstraction of a computational
system. Among of its examples, an algebraic framework for coherent confluence
proofs, in rewriting theory, for an higher dimensional generalisation of modal
Kleene algebra proposes in [3] and the algebra of the regular languages, traces
of programs and the algebra of relations on which the program states transitions
are modelled as binary relations on the set of states. For instance, by starting
from the atomic programs represented in the transition systems of Fig. 1
we have the Kleene algebra of binary relations to interpret composed programs
build from these ones. For instance, the sequential composition of these struc-
tures, i.e. the program that interpret the program Aπ;Aπ′ that execute one step
in Aπ followed by another in Aπ′ , is just interpreted as the standard relational
composition, as represented in Fig 2. Moreover, operations of non determinis-
tic choice + and iteration closure ∗, the ones needed to encode any imperative
program, are also provided by the mentioned Kleene algebra.

If the mentioned above models plays a relevant role in the current formal de-
velopment and design processes, the emergence of new computational paradigms



Aπ ∶ s1
**
s2
��

[
0 1
0 1
]

Aπ′ ∶ s1
**
s2
��

jj [
0 1
1 1
]

Fig. 1. Examples of abstract programs

Aπ;π′ ∶ s1
�� **

s2
��

jj [
1 1
1 1
]

Fig. 2. Examples of abstract programs

and scenarios, as Fuzzy and Probabilistic programming, entails not only the defi-
nition of new Kleene algebra models, but also some variants and generalisations.
As examples of the latter efforts, we can point out our recent development on
the study of Kleene algebras to deal with “intervals as programs” [22], in order
to deal with situations where the precise values of the transitions weights are not
provided (e.g. entailed by the machine representation of an irrational number).

This paper develops a novel algebraic study on Kleene algebras, based on
pseudo uninorms defined over partial orders. As is well known, we can easily
obtain a Kleene algebra from any Boolean algebra, by taking the operation ⋆ as
the as the constant function x⋆ = ⊺, where ⊺ is the top element of the algebra.
Following this intuition, we abstract the infimum operation as pseudo uninorms
defined over partial orders, in order to build algebras for fuzzy programs. As
expected such new algebras generalises the classic case.

We investigate how fuzzy programs, i.e., elements of these structures, behaves
with respect to the Kleene operations. At this level, classic choice is maintained,
but the notions of sequential composition and Kleene closure are abstracted as
specific uninorms, defined over meet semilattices.

Building new Kleene algebras from other Kleene algebras can be also very
useful. The work of Conway plays a very relevant role. He introduces in [4]
some matricial constructions that preserve the Kleene algebra structure. In other
words, he introduces a method, with which, given a a Kleene algebra over a set
K, it construct a Kleene algebra over the squared matrices Mn(K). For instance
the Kleene algebra of relations used bellow (cf. Fig 1), which elements are the
adjacency matrices, can be taken with this method from the Kleene algebra
defined by the two-elements boolean algebra (with 0⋆ = 1⋆ = 1).

In this work we introduce an operator to construct new Kleene algebras from
other Kleene algebras based in the notion of automorphism. These maps re-
interprets programs and the programs operations of a Kleene algebra into a new
Kleene algebra, by contributing with an alternative source of program algebras.



Context and Contributions.

In [18] Menger introduced triangular norms (t-norms) in order to provide triangle
inequality for distances on probabilistic metric spaces. Since Menger’s definition
is weak, Schweizer and Sklar [23] provided a new definition for t-norms adding
new axioms such as associativity and taking 1 as the neutral element. In [24],
they introduced the notion of t-conorm by simply taking 0 as the neutral element
instead of 1.

The axioms of T-norms (T-conorms) was, then, changed by abolishing some
of its conditions. Those weakening gave rise to the so called pseudo t-norm. In
[9] (see also [7]) Siegfried Gottwald considered the notion of pseudo t-norm by
abolishing the commutativity property. On the other hand, further authors such
as abolished other axioms — see [11, 15, 29]. In particular, in [11] Sándor Jenei
suppressed the commutativity property and the left side of the isotonicity prop-
erty; and in [15], in addition to these two properties, Hua-Wen Liu suppressed
the associativity. In [17], M. Mas, M. Monserrat and J. Torrens introduced the
notion of left uninorms and right uninorms. One year after W. Sander [21] intro-
duced the notion of pseudo uninorm as a bivariated function on the unit interval
that is associative, isotone and has a neutral element. This notion coincides with
the functions which are, both, left and right uninorms. In [28] the notion of left
uninorms, right uninorms and pseudo uninorms was extended for lattice-valued
sets. Two pseudo uninorms having the same neutral element is called of the
same type. In [27] the notion of pseudo uninorm was extended for complete
lattices and here we generalize them for posets. Recently, the papers [16, 25, 26]
consider lattice-valued and [0,1]-valued pseudo uninorms.

In this paper, we investigate the notion of pseudo uninorms and show how
they can be used to build Kleene Algebras, which is a kind of algebra used to
model some computational systems.

Outline. This paper is organized in the following way: Section 2 introduces the
notions of pseudo uninorms and Kleene algebras. Section 3 provide some new re-
sults and construction on pseudo uninorms. Section 4 shows how Kleene algebras
are built from certain pseudo uninorms and that every Kleene algebra is related
to a pseudo uninorm. The section also studies automorphisms on this structures
and how they can generate new pseudo uninorm based Kleene algebras.

2 Preliminaries

Let ⟨P,≤⟩ be a poset and e ∈ P . Then, trivially, ⟨Pe,≤e⟩ and ⟨P e,≤e⟩ are poset
with a greater and least, respectively, element when Pe = {x ∈ P ∶ x ≤ e},
P e = {x ∈ P ∶ e ≤ x} and ≤e and ≤e are the restriction of ≤ to Pe and P e,
respectively 3. Let ∆P = {a ∈ P ∶ for each x ∈ P a ≤ x or x ≤ a}. ⟨P,≤⟩ is a total
order set, whenever ∆P = P . ⟨P,≤⟩ is a meet (join) semilattice if every

3 The reader can also find in the literature ↓ e and ↑ e, respectively.



x, y ∈ P have an infimum (supremum) in P , denoted by x ∧ y (x ∨ y). ⟨P,≤⟩ is a
lattice if it is both: meet and join semilattice.

Closure operators play an important role in several fields of the mathematics;
e.g. in Algebra, Logic and Topology. In this paper a closure operator will be
required to develop this work:

Definition 1. Let ⟨P,≤⟩ be a poset. A closure operator on P is a function
⋆ ∶ P → P such that for each x, y ∈ P

(C1) if x ≤ y then x⋆ ≤ y⋆ — Isotonicity,
(C2) x ≤ x⋆ — inflation, and
(C3) (x⋆)⋆ = x⋆ — idempotency.

Definition 2. Let ⟨P,≤⟩ be a poset. A function U ∶ P × P → P is a pseudo
uninorm on P , whenever, for each w,x, y, z ∈ P it satisfies:

1. U(x,U(y, z)) = U(U(x, y), z) — Associativity,
2. w ≤ x and y ≤ z then U(w,y) ≤ U(x, z) — Isotonicity, and
3. there is e ∈ P s.t. U(x, e) = U(e, x) = x — has neutral element.

UeP is the set of all pseudo uninorms on P with neutral element e. If e is
the greater (least) element of P then U is called of pseudo t-norm (pseudo
t-conorm).

Commutative pseudo uninorms are called of uninorm on P in [12]. Uninorms
on poset [0,1] were introduced in [6], but the name uninorm only was coined in
[30].

Remark 1. If ⟨P,≤⟩ is a meet-semilattice, then the infimum, i.e. ∧, is a pseudo
t-norm iff P has a top element. Analogously, if ⟨P,≤⟩ is a join-semilattice then
the supremum, i.e. ∨, is a pseudo t-conorm iff P has a bottom element.

Remark 2. The set UeP endowed with the following binary relation is a partial
order:

U1 ⪯e U2 iff ∀x, y ∈ P, U1(x, y) ≤ U2(x, y).

If U ∈ UeP then U(x, y) ≤ x ≤ e and U(x, y) ≤ y whenever x, y ∈ Pe, U(x, y) ≥ x ≥ e
and U(x, y) ≥ y whenever x, y ∈ P e, and x ≤ U(x, y) ≤ y (and also x ≤ U(y, x) ≤ y)
whenever x ∈ Pe and y ∈ P e.

Remark 3. Let ⟨P,≤⟩ be a bounded poset and e ∈ P . If U ∈ UeP then U(⊺,⊺) ≥
U(⊺, e) = ⊺ and therefore U(⊺,⊺) = ⊺. Analogously it is possible to prove that
U(�,�) = �.

We recall in the notion of Kleene algebra. This algebraic structure represents
the abstract notion of a computational systems where programs can be modelled.
Namely it is constituted by an universe of programs K that can be operated by
a (non deterministic) choice +, by a sequential composition ; and by an iterative
closure ∗. The algebra of regular languages, of binary relations and of program
traces are well known instantiations of such structure.



Definition 3. An algebra ⟨K,+, ⋅,⋆,0,1⟩ of type (2,2,1,0,0) is a Kleene algebra
if for each a, b, c ∈K satisfy the following axioms:

(KA1) a + (b + c) = (a + b) + c;
(KA2) a + b = b + a;
(KA3) a + a = a;
(KA4) a + 0 = 0 + a = a;
(KA5) a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c;
(KA6) a ⋅ 1 = 1 ⋅ a = a;
(KA7) a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c);
(KA8) (a + b) ⋅ c = (a ⋅ c) + (b ⋅ c);
(KA9) a ⋅ 0 = 0 ⋅ a = 0;

(KA10) 1 + (a ⋅ a⋆) ≤ a⋆;
(KA11) 1 + (a⋆ ⋅ a) ≤ a⋆;
(KA12) If a ⋅ b ≤ b then a⋆ ⋅ b ≤ b; and
(KA13) If a ⋅ b ≤ a then a ⋅ b⋆ ≤ a.

Where ≤ is the natural partial order on K defined by

a ≤ b if and only if a + b = b. (1)

Remark 4. In fact ⟨K,≤⟩ is a join-semilattice with 0 as least element [14].

Lemma 1. [14] Let ⟨K,+, ⋅,⋆,0,1⟩ be a Kleene algebra. Then

(KO1) If a ≤ b then a⋆ ≤ b⋆.
(KO2) 0⋆ = 1.
(KO3) 1 + a ⋅ a⋆ = a⋆.
(KO4) (a⋆)⋆ = a⋆.

3 Some new results and construction on pseudo uninorms

Proposition 1. Let ⟨P,≤⟩ be a poset with a bottom element ⊥. For each e ∈ P ,
if ⟨P e,≤e⟩ is a join-semilattice, then ⟨UeP ,⪯e⟩ has a bottom element.

Proof. Let � be the least element of P . Then the function

Ue(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

� if x, y /∈ P e

x ∨ y if x, y ∈ P e

x if x /∈ P e and y ∈ P e

y if x ∈ P e and y /∈ P e

is the bottom element of ⟨UeP ,⪯e⟩.

Proposition 2. Let ⟨P,≤⟩ be a poset with a greater element ⊺. For each e ∈ P
if ⟨Pe,≤e⟩ is a meet-semilattice then ⟨UeP ,⪯e⟩ has a greater element.



Proof. The function

Ue(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

x ∧ y if x, y ∈ Pe
⊺ if x, y /∈ Pe
x if x /∈ Pe and y ∈ Pe
y if x ∈ Pe and y /∈ Pe

is the greater element of ⟨UeP ,⪯e⟩ .

Proposition 3. Let ⟨P,≤⟩ be a poset, e ∈ P and U ∈ UeP . Then the restriction,
U/Pe

, is a pseudo t-norm on ⟨Pe,≤e⟩ and U/P e is a pseudo t-conorm on ⟨P e,≤e⟩.

Proof. Straightforward.

Corollary 1. Let ⟨P,≤⟩ be a poset, e ∈ P , U ∈ UeP . Then for each isotone bijec-
tion φ ∶ Pe → P , the function T ∶ P × P → P defined by

T (x, y) = φ(U(φ−1(x), φ−1(y)))

is a pseudo t-norm on P .

Corollary 2. Let ⟨P,≤⟩ be a poset, e ∈ P , U ∈ UeP . Then for each isotone bijec-
tion ψ ∶ P e → P , the function S ∶ P × P → P defined by

S(x, y) = ψ(U(ψ−1(x), ψ−1(y)))

is a pseudo t-conorm on P .

Proposition 4. Let ⟨P,≤⟩ be a poset, UP the set of all pseudo uninorms on P
and “⪯” the following binary relation:

U1 ⪯ U2 iff ∀x, y ∈ P, U1(x, y) ≤ U2(x, y).

Then

1. ⟨UP ,⪯⟩ is a poset;
2. Let U1, U2 ∈ UP be pseudo uninorms with neutral elements e1 and e2, respec-

tively. If U1 ⪯ U2 then e2 ≤ e1;
3. Let U1, U2 ∈ UP be pseudo uninorms with neutral elements e1 and e2, respec-

tively. If neither e1 ≤ e2 nor e2 ≤ e1 then neither U1 ⪯ U2 nor U2 ⪯ U1.
4. If ⟨P,≤⟩ has a greater and a least element then ⟨UP ,⪯⟩ also have a greater

and a least element.

Corollary 3. Let ⟨P,≤⟩ be a poset. Then,

1. If T is a pseudo t-norm on P then, T (x, y) ≤ x and T (x, y) ≤ y.
2. If S is a pseudo t-conorm on P then, x ≤ S(x, y) and y ≤ S(x, y).

It is obvious that uninorms, pseudo t-norms and pseudo t-conorms on a
bounded lattice are pseudo uninorms on the same lattice. But, there exist pseudo
uninorms which are neither uninorms, pseudo t-norms nor pseudo t-conorms.
The following proposition provides an infinite family of such pseudo uninorms.

The following results generalize the Proposition 2.1 and 2.2 of [5].



Proposition 5. Let ⟨P,≤⟩ be a join-semilattice with top element and T ∶ P×P →
P be a pseudo t-norm on P . Then for any e ∈ P and isotone bijection φ ∶ Pe → P ,
the mapping Ue ∶ P × P → P defined by:

Ue(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

φ−1(T (φ(x), φ(y))) if x, y ∈ Pe
x ∨ y if x, y /∈ Pe
x if x /∈ Pe and y ∈ Pe
y if x ∈ Pe and y /∈ Pe

(2)

is a pseudo uninorm on P with e as neutral element.

Proposition 6. Let ⟨P,≤⟩ be a meet-semilattice with bottom element and S ∶

P ×P → P be a pseudo t-conorm on P . Then for any e ∈ P and isotone bijection
ψ ∶ P e → P , the mapping Ue ∶ P × P → P defined by:

Ue(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψ−1(S(ψ(x), ψ(y))) if x, y ∈ P e

x ∧ y if x, y /∈ P e

x if x /∈ P e and y ∈ P e

y if x ∈ P e and y /∈ P e

(3)

is a pseudo uninorm on P with e as neutral element.

Proof. Analogous to Proposition 5.

Proposition 7. Let ⟨P,≤⟩ be a poset, e ∈ P and U1, U2 ∈ U
e
P . Then the mapping

U1 ⋊U2 ∶ P × P → P defined by

U1 ⋊U2(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

U1(x, y) if x, y ∈ Pe
U2(x ∨ e, y ∨ e) if x, y /∈ Pe
x if x /∈ Pe and y ∈ Pe
y if x ∈ Pe and y /∈ Pe

(4)

is a pseudo uninorm on P with e as neutral element.

Proposition 8. Let ⟨P,≤⟩ be a poset, e ∈ P and U1, U2 ∈ U
e
P . Then the mapping

U1 ⋉U2 ∶ P × P → P defined by

U1 ⋉U2(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

U1(x ∧ e, y ∧ e) if x, y /∈ P e

U2(x, y) if x, y ∈ P e

x if x /∈ P e and y ∈ P e

y if x ∈ P e and y /∈ P e

(5)

is a pseudo uninorm on P with e as neutral element.

Proof. Analogous.

As corollary we have the following generalization of the Theorem 1 in [8] (see
also Theorem 2.1 in [27]).



Proposition 9. Let ⟨L,≤⟩ be a bounded lattice and T,S ∶ L×L→ L be a pseudo
t-norm and a pseudo t-conorm on L, respectively. Then, for any e ∈ L and isotone
bijections φ ∶ Le → L and ψ ∶ Le → L, the mappings U1, U2 ∶ L × L → L defined
by:

U1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ−1(T (φ(x), φ(y))) if x, y ∈ Le
ψ−1(S(ψ(x), ψ(y))) if x, y ∈ Le

x if x /∈ Le and y ∈ Le
y if x ∈ Le and y /∈ Le
(x ∧ y) ∨ e otherwise

(6)

U2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ−1(T (φ(x), φ(y))) if x, y ∈ Le
ψ−1(S(ψ(x), ψ(y))) if x, y ∈ Le

x if x /∈ Le and y ∈ Le

y if x ∈ Le and y /∈ Le

(x ∨ y) ∧ e otherwise

(7)

are pseudo uninorms on L with e as neutral element.

3.1 Annihilators of pseudo uninorms

In the literature, an element a of a set A is called an annihilator for a func-
tion F ∶ A × A → A, whenever “F (a, x) = F (x, a) = a for each x ∈ A”. For
example, zero is an annihilator for the usual multiplication. It is not difficult
to see that an annihilator for F is unique and also that bottom, ⊥, and top, ⊺,
elements are annihilators for pseudo t-norm and pseudo t-conorm, respectively.

From this point on, the expression U(�,⊺) will be denoted by aU .

Theorem 1. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ UeP has an
annihilator, then it is aU .

The next proposition is a generalization of the Lemma 1 in [8].

Proposition 10. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ UeP , then

1. U(aU , x) ≤ aU ≤ U(x, aU) for all x ∈ P ;
2. U(aU , x) = aU for all x ∈ P e;
3. U(x, aU) = aU for all x ∈ Pe.

Corollary 4. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ UeP is com-
mutative then U has an annihilator element.

The next proposition is stronger, since the commutativity is relaxed whereas
the existence of an annihilator is maintained.

Proposition 11. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ UeP is such
that U(�,⊺) = U(⊺,�), then



– aU is annihilator;
– aU = � or aU = ⊺ or aU incomparable with e.

Proposition 12. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ UeP is such
that U(�,⊺) = U(⊺,�) = �, then � is the annihilator of U .

Proposition 13. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ UeP is such
that U(�,⊺) = U(⊺,�) = ⊺ then ⊺ is an annihilator of U .

3.2 Idempotency

In the literature, an operation F ∶ A × A → A is called idempotent whenever
for each x ∈ A, F (x,x) = x. In this section we will confront the notion of pseudo
uninorms with such property.

Proposition 14. Let ⟨P,≤⟩ be a poset such that ⟨Pe,≤e⟩ is a meet-semilattice
and ⟨P e,≤e⟩ is a join-semilattice. U ∈ UeP is idempotent iff for each x, y ∈ L,

U(x, y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x ∧ y if x, y ∈ Pe
x ∨ y if x, y ∈ P e

U(x, y) ∈ [x ∧ y, x ∨ y] otherwise

Corollary 5. ⟨P,≤⟩ be a meet-semilattice with a top element, denoted by ⊺.
Then U ∈ U⊺P is idempotent iff U(x, y) = x ∧ y for each x, y ∈ P .

Corollary 6. ⟨P,≤⟩ be a join-semilattice with a bottom element, denoted by �.
Then U ∈ U�P is idempotent iff U(x, y) = x ∨ y for each x, y ∈ P .

3.3 Join morphism

In this section we show how pseudo uninorms behave with respect to distribu-
tivity over supremum or just a join morphism.

Proposition 15. Let ⟨P,≤⟩ be a join-semilattice. If U ∈ UP , then for each
x, y, z ∈ P :

1. U(x, y ∨ z) ≥ U(x, y) ∨U(x, z), and
2. U(y ∨ z, x) ≥ U(y, x) ∨U(z, x).

Definition 4. Let ⟨P,≤⟩ be a join-semilattice and U ∈ UP be a pseudo uninorm.
U is a join morphism if for each x, y, z ∈ P ,

1. U(x, y ∨ z) = U(x, y) ∨U(x, z), and
2. U(y ∨ z, x) = U(y, x) ∨U(z, x).

Proposition 16. Let ⟨P,≤⟩ be a join-semilattice and U ∈ UP be a pseudo uni-
norm such that:

1. For each w,x, y, z ∈ P , if y ≤ z and U(x, y) ≤ w ≤ U(x, z), then there exists
u ∈ P such that U(x,u) = w,



2. for each w,x, y, z ∈ P , if y ≤ z and U(y, x) ≤ w ≤ U(z, x), then there exists
u ∈ P such that U(u,x) = w, and

3. for each x, y, z ∈ P , if U(x, y) ≤ U(x, z) or U(y, x) ≤ U(z, x), then y ≤ z.

Then U is join morphism.

Proposition 17. Let ⟨P,≤⟩ be a totally ordered set. Each pseudo uninorm on
P is a join morphism.

4 Kleene algebras based on pseudo uninorms

In this section we show how Kleene algebras are built by using pseudo uninorms
under some conditions. In order to achieve that we propose the notion of Kleene
operator based on a pseudo uninorm:

Definition 5. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P and U ∈ UeP a pseudo
uninorm. A Kleene operator based on U is a function ⋆ ∶ P → P such that
for each x, y ∈ P satisfy:

(K1) e ∨U(x,x⋆) ≤ x⋆,
(K2) e ∨U(x⋆, x) ≤ x⋆,
(K3) If U(x, y) ≤ y then U(x⋆, y) ≤ y, and
(K4) If U(y, x) ≤ y then U(y, x⋆) ≤ y.

Proposition 18. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P and U ∈ UeP such that
either U is a join morphism or e ∈ ∆P . If U(x,x) ≤ x for each x ∈ P e then the
operator x⋆ = x ∨ e is a Kleene operator for U .

Proof. Observe that U(x,x) ≤ x for each x ∈ Pe. So, the condition “U(x,x) ≤ x
for each x ∈ P e” is equivalent to “U(x,x) ≤ x∨e for each x ∈ P”. Let x ∈ P , then

(K1) Since x ≤ x⋆ and x⋆ ∈ P e then e∨U(x,x⋆) ≤ e∨U(x⋆, x⋆) ≤ e∨x⋆ = x⋆.
(K2) Analogous to (K1).
(K3) If U is a join morphism and U(x, y) ≤ y then U(x⋆, y) = U(x ∨ e, y) =

U(x, y) ∨ U(e, y) = U(x, y) ∨ y = y. On the other hand, if e ∈ ∆P and
U(x, y) ≤ y then when x ≤ e we have that U(x⋆, y) = U(x ∨ e, y) =

U(e, y) = y and when e ≤ x we have that U(x⋆, y) = U(x ∨ e, y) =

U(x, y) ≤ y. Therefore, in both cases, the operator ⋆ satisfy (K3).
(K4) Analogous to (K3).

Theorem 2. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P and U ∈ UeP such that either
U is a join morphism or e ∈∆P . Then the operator x⋆ = x∨e is a Kleene operator
for U iff for each x, y ∈ P e, U(x, y) = x ∨ y

Theorem 3. Let ⟨P,≤,�,⊺⟩ be a bounded join-semilattice, e ∈ ∆P and U ∈ UeP
such that U(�,⊺) = U(⊺,�) = � and U(x, y) = x ∨ y for each x, y ∈ P e. Then
⟨P,∨, U,⋆,�, e⟩ where x⋆ = x ∨ e, is a Kleene algebra.



Theorem 4. Let ⟨P,≤,�,⊺⟩ be a bounded join-semilattice, e ∈ P , U ∈ UeP be a
join morphism such that U(�,⊺) = U(⊺,�) = � and U(x,x) ≤ x for each x ∈ P e.
Then ⟨P,∨, U,⋆,�, e⟩ where x⋆ = x ∨ e, is a Kleene algebra.

Theorem 5. Let ⟨K,+, U,⋆,0, e⟩ be a Kleene algebra. Then

1. U ∈ UeP ;
2. e ≤ x⋆, for each x ∈K;
3. x⋆ ≥ e + x, for each x ∈K;
4. ⋆ is a closure operator on ⟨K,≤⟩.

4.1 Automorphisms on [0,1] acting on Kleene algebras

In fuzzy logic, a typical way of generating newer fuzzy connectives (t-norms,
t-conorms and implications) from a fuzzy connective of the same type is ob-
tained via automorphisms on the real unit interval [0,1], which are defined as
bijective functions on [0,1] preserving natural ordering. Formally, a function
φ ∶ [0,1] → [0,1] is an automorphism on [0,1] if it is bijective and isotone,
i.e. x ≤ y ⇒ φ(x) ≤ φ(y) [1, 13]. In [2] is considered the equivalent definition
where automorphisms are continuous and strictly isotone function satisfying the
boundary conditions φ(0) = 0 and φ(1) = 1.

Is clear that this notion can be generalize for arbitraries posets.

Definition 6. A function φ ∶ P → P is an automorphism on a poset ⟨P,≤⟩ if it
is bijective and for each x, y ∈ P we have that

φ(x) ≤ φ(y) if and only if x ≤ y. (8)

We will denote the set of all automorphism on ⟨P,≤⟩ by Aut⟨P,≤⟩.

Remark 5. Let φ,ψ ∈ Aut⟨P,≤⟩.

1. The inverse of an automorphism is also an automorphism. In fact, the inverse
of bijection also is a bijection and x ≤ y iff φ(φ−1(x)) ≤ φ(φ−1(y)) iff φ−1(x) ≤
φ−1(y).

2. The composition of two automorphism is also an automorphism. In fact, the
composition of bijective functions also is bijective and x ≤ y iff ψ(x) ≤ ψ(y)
iff φ ○ ψ(x) ≤ φ ○ ψ(y).

3. The identity function IdP on P is an automorphism. In addition, φ ○ IdP =

φ = IdP ○ φ.

Therefore, ⟨Aut⟨P,≤⟩, ○⟩ is a group.
Let φ be an automorphism on P and f ∶ Pn → P . In algebra has been

extensively study the actions of groups in order to interpret the elements of the
group as ”acting” on some space, but preserving the structure of that space [10,
20]. Here we study the action of the group ⟨Aut⟨P,≤⟩, ○⟩ on pseudo uninorms,



Kleene operators and Kleene algebras. In general, the action of φ on a function
f ∶ Pn → P , denoted by fφ, is defined as follows

fφ(x1, . . . , xn) = φ
−1

(f(φ(x1), . . . , φ(xn))). (9)

In particular, the action of automorphism preserve the usual fuzzy connectives
[1, 2, 19] and also pseudo uninorms on [0,1] [5, Theorem 3.1]. Here we generalize
this last result by consider pseudo uninorms on an arbitrary poset ⟨P,≤⟩.

Proposition 19. Let U be a pseudo uninorm and φ be an automorphism on a
poset ⟨P,≤⟩. Then Uφ is also a pseudo uninorm. In addition,

1. if ⟨P,≤⟩ is bounded (with � and ⊺ as least and great elements) then φ(�) = �
and φ(⊺) = ⊺.

2. if ⟨P,≤⟩ is a join (meet) semilattice then φ(x ∨ y) = φ(x) ∨ φ(y) (φ(x ∧ y) =
φ(x) ∧ φ(y)), i.e. φ is a join (meet) morphism.

Proposition 20. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P , U ∈ UeP and φ ∈ Aut⟨P,≤
⟩. If ⋆ ∶ P → P is a Kleene operator for U then ⍟ ∶ P → P , defined by x⍟ =

φ−1(φ(x)⋆) is a Kleene operator based on Uφ.

Proposition 21. Let ⟨K,+, ⋅,⋆,0,1⟩ be a Kleene algebras and φ ∈ Aut⟨K,≤⟩
where ≤ is the partial order defined in Equation 1. Then ⟨K,+φ, ⋅φ,⍟,0,1⟩ also is
Kleene algebra. In addition, for each x, y ∈K we have that φ(x+y) = φ(x)+φ(y),
φ(x ⋅ y) = φ(x) ⋅ φ(y), φ(0) = 0 and φ(1) = 1.

5 Final remarks

In this paper we have shown the relation between the notions of Kleene alge-
bras and pseudo uninorms. We have shown that every Kleene algebra induces a
pseudo uninorm and that some pseudo uninorms induce Kleene algebras. This
connection enables both: (1) another viewpoint on the theory of Kleene algebras
and (2) indicates a way to build Kleene algebras in the fuzzy setting — since we
provide the requirements to build Kleene algebras from pseudo uninorms.
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Appendix with proofs

Proof of Proposition 4

Proof. 1. Straightforward.
2. e2 = U1(e2, e1) ≤ U2(e2, e1) = e1.
3. If U1 ⪯ U2 then by previous item e2 ≤ e1. Analogously, if U2 ⪯ U1 then by

previous item e1 ≤ e2. Therefore, if e1 and e2 are not comparable, then also
are not comparable U1 with U2.

4. Let � and ⊺ be the least and the greater element of P , respectively. Then,
let

U⊺(x, y) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x if y = �
y if x = �
⊺ otherwise

U�(x, y) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x if y = ⊺
y if x = ⊺
� otherwise

It is easy to prove that U�, U⊺ ∈ UP . Let U ∈ UP with e ∈ P as neutral element
and x, y ∈ P . Then if x = ⊺ then U�(⊺, y) = y = U(e, y) ≤ U(⊺, y). Analogously,
for the case y = ⊺. Now, if x ≠ ⊺ and y ≠ ⊺ then U�(x, y) = � ≤ U(x, y). So,
U� ⪯ U . Analogously, it is proven that U ⪯ U⊺.

Proof of Proposition 5

Proof. Let x, y, z ∈ P . If x, y, z ∈ Pe, then
Ue(x,Ue(y, z)) = φ

−1(T (φ(x), T (φ(y), φ(z))))
= φ−1(T (T (φ(x), φ(y)), φ(z)))
= Ue(Ue(x, y), z).

In any other case, Ue(x,Ue(y, z)) = ∨{x, y, z} ∩ Pe = Ue(Ue(x, y), z). There-
fore, Ue is associative.

Let x ∈ P . If x ∈ Pe, then Ue(x, e) = φ
−1(T (φ(x), φ(e))) = x = φ−1(T (φ(e), φ(x))) =

Ue(e, x). If x /∈ Pe then Ue(x, e) = x = Ue(e, x). Therefore e is a neutral element
of Ue.

Let x, y, z ∈ P such that y ≤ z. If x /∈ Pe we have the following cases:

1. y /∈ Pe: then z /∈ Pe and therefore, Ue(x, y) = x ∨ y ≤ x ∨ z = Ue(x, z).
2. z ∈ Pe: then y ∈ Pe and therefore, Ue(x, y) = x = Ue(x, z).
3. y ∈ Pe and z /∈ Pe and therefore, Ue(x, y) = x ≤ x ∨ z = Ue(x, z).

If x ∈ Pe the we have three cases:

1. y /∈ Pe: then z /∈ Pe and therefore,
Ue(x, y) = y ≤ z = Ue(x, z).

2. z ∈ Pe: then y ∈ Pe and therefore,
Ue(x, y) = φ

−1(T (φ(x), φ(y))) ≤ φ−1(T (φ(x), φ(z))) = Ue(x, z).
3. y ∈ Pe and z /∈ Pe and therefore,
Ue(x, y) = φ

−1(T (φ(x), φ(y))) ≤ y ≤ z = Ue(x, z).

Therefore, Ue is isotone in the second component. The prove that is isotone in
the first component is analogous.



Proof of Proposition 7

Proof. Let x, y, z ∈ P such that y ≤ z. If x /∈ Pe then:

– Case z ∈ Pe: then y ∈ Pe and therefore U1 ⋊U2(x, y) = x = U1 ⋊U2(x, z).
– Case y, z /∈ Pe: then U1 ⋊ U2(x, y) = U2(x ∨ e, y ∨ e) ≤ U2(x ∨ e, z ∨ e) =

U1 ⋊U2(x, z).
– Case y ∈ Pe and z /∈ Pe: then, by Remark 2, U1 ⋊ U2(x, y) = x ≤ x ∨ e ≤

U2(x ∨ e, z ∨ e) = U1 ⋊U2(x, z).

If x ∈ Pe then:

– Case y, z ∈ Pe: Then we have that U1 ⋊ U2(x, y) = U1(x, y) ≤ U1(x, z) =

U1 ⋊U2(x, z).
– Case y ∈ Pe and z /∈ Pe: Then, by Remark 2, we have that U1 ⋊ U2(x, y) =
U1(x, y) ≤ y ≤ z = U1 ⋊U2(x, z).

– Case y /∈ Pe: then z /∈ Pe and therefore U1 ⋊U2(x, y) = y ≤ z = U1 ⋊U2(x, z).

Therefore, U1 ⋊U2 is isotone in the second component. The prove that is isotone
in the first component is analogous.

Let x, y, z ∈ P . Case x, y, z ∈ Pe or x, y, z /∈ Pe we have that by associativity of
U1 and U2, U1 ⋊U2(x,U1 ⋊U2(y, z)) = U1 ⋊U2(U1 ⋊U2(x, y), z). The other cases:

1. Case x, y ∈ Pe and z /∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = z = U1 ⋊ U2(U1 ⋊

U2(x, y), z).
2. Case x ∈ Pe and y, z /∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = U2(y ∨ e, z ∨ e) =

U1 ⋊U2(U1 ⋊U2(x, y), z).
3. Case x, y /∈ Pe and z ∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = U2(x ∨ e, y ∨ e) =

U1 ⋊U2(U1 ⋊U2(x, y), z).
4. Case x /∈ Pe and y, z ∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = x = U1 ⋊ U2(U1 ⋊

U2(x, y), z).

Therefore, U1⋊U2 is associative, and since e is clearly a neutral element then
U1 ⋊U2 is a pseudo uninorm.

Proof of Proposition 9

Proof. By Propositions 5 and 6, we have that Ue and Ue are pseudo uninorm
with e as neutral element. So, by Proposition 7, Ue ⋊U

e also is pseudo uninorm
with e as neutral element. Therefore, since

Ue ⋊U
e(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Ue(x, y) if x, y ∈ Le
Ue(x ∨ e, y ∨ e) if x, y /∈ Le
x if x /∈ Le and y ∈ Le
y if x ∈ Le and y /∈ Le

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ−1(T (φ(x), φ(y))) if x, y ∈ Le
ψ−1(S(ψ(x), ψ(y))) if x, y ∈ Le

x if x /∈ Le and y ∈ Le
y if x ∈ Le and y /∈ Le
(x ∧ y) ∨ e otherwise

= U1(x, y)



then U1 is a pseudo uninorm with e as neutral element.
Analogouysly is possible to prove that U2 = Ue⋉U

e and therefore, by Proposition
8, pseudo uninorm with e as neutral element.U2 also is a pseudo uninorm with
e as neutral element.

Proof of Proposition 10

Proof. Let x ∈ P , then U(aU , x) ≤ U(aU ,⊺) = U(U(�,⊺),⊺) = U(�, U(⊺,⊺)) =

U(�,⊺) = aU and U(x, aU) ≥ U(�, U(�,⊺)) = U(U(�,�),⊺) = U(�,⊺) = aU .
Therefore, U(aU , x) ≤ aU ≤ U(x, aU) for all x ∈ P .

If x ≥ e then U(⊺, x) ≥ U(⊺, e) = ⊺ and so U(⊺, x) = ⊺. Therefore, U(aU , x) =
U(U(�,⊺), x) = U(�, U(⊺, x)) = U(�,⊺) = aU and U(x, aU) = U(x,U(�,⊺)) =

U(U(x,�),⊺) ≥ U(�,⊺) = aU .
If x ≤ e then U(x,�) ≤ U(e,�) = � and so U(x,�) = �. Therefore, U(x, aU) =

U(x,U(�,⊺)) = U(U(x,�),⊺) = U(�,⊺) = aU and U(aU , x) = U(U(�,⊺), x) =

U(�, U(⊺, x)) ≤ U(�,⊺) = aU . Hence, U(x, aU) = aU ≥ U(aU , x).

Proof of Proposition 11

Proof. Let x ∈ P . Then, U(aU , x) ≥ U(aU ,�) = U(U(�,⊺),�) = U(U(⊺,�),�) =
U(⊺, U(�,�)) = U(⊺,�) and U(x, aU) ≤ U(⊺, U(�,⊺)) = U(⊺, U(⊺,�)) = U(U(⊺,⊺),�) =
U(⊺,�). Therefore, by Proposition 10, U(⊺,�) ≤ U(aU , x) ≤ aU ≤ U(x, aU) ≤

U(⊺,�) = U(⊺,�) and, consequently, U(aU , x) = aU = U(x, aU). Hence, aU is an
annihilator of U .

If aU ≤ e then aU = U(�, aU) ≤ U(�, e) = � and so aU = �. If aU ≥ e then
aU = U(⊺, aU) ≥ U(⊺, e) = ⊺ and so aU = ⊺. Therefore, aU = � or aU = ⊺ or aU
incomparable with e.

Proof of Proposition 12

Proof. Let x ∈ P . Since U is isotone then U(�, x) ≤ U(�,⊺) = � and U(x,�) ≤
U(⊺,�) = �. Therefore, U(x,�) = U(�, x) = � for each x ∈ P .

Proof of Proposition 13

Proof. Let x ∈ P . Since U is isotone then U(x,⊺) ≥ U(�,⊺) = ⊺ and U(⊺, x) ≥
U(⊺,�) = ⊺. Therefore, U(x,⊺) = U(⊺, x) = ⊺ for each x ∈ P .

Proof of Proposition 14

Proof. (⇒) If x, y ∈ Pe then, by one hand, U(x, y) ≤ U(x, e) = x and U(x, y) ≤
U(e, y) = y and therefore, U(x, y) ≤ x∧y. On the other hand, x∧y = U(x∧y, x∧
y) ≤ U(x, y). Therefore, U(x, y) = x ∧ y.

If x, y ∈ P e then, by one hand, U(x, y) ≥ x ∨ y and by the other hand,
x ∨ y = U(x ∨ y, x ∨ y) ≥ U(x, y). Therefore, U(x, y) = x ∨ y.

In other case:



– If x and y are comparable, then by a symmetric argument it is sufficient
to consider the case x ∈ Pe and y ∈ P e, and therefore x ≤ y. Thereby, x =

U(x,x) ≤ U(x, y) and U(x, y) = U(U(x,x), y) = U(x,U(x, y)) ≤ U(x, e) = x,
i.e. U(x, y) = x ∧ y.

– If x and y are not comparable, then x ∈ Pe and y /∈ Pe ∪ P
e, or, x ∈ P e and

y /∈ Pe ∪ P
e. In the first case, U(x, y) ≤ U(e, y) = y ≤ x ∨ y and U(x, y) ≥

U(x, y ∧ e) = x ∧ y ∧ e = x ∧ y. Analogously, in the second case, U(x, y) ≥

U(e, y) = y ≥ x ∧ y and U(x, y) ≤ U(x, y ∨ e) = x ∨ y ∨ e = x ∨ y. So, in both
cases, U(x, y) ∈ [x ∧ y, x ∨ y].

(⇐) Straightforward.

Proof of Proposition 15

Proof. For each x, y, z ∈ P we have that once U(x, y) ≤ U(x, y∨ z) and U(x, z) ≤
U(x, y ∨ z) then U(x, y) ∨ U(x, z) ≤ U(x, y ∨ z). The prove that U(y ∨ z, x) ≥

U(y, x) ∨U(z, x) is analogous.

Proof of Proposition16

Proof. By Proposition 15,

U(x, y) ∨U(x, z) ≤ U(x, y ∨ z) (10)

Since, U(x, y) ≤ U(x, y)∨U(x, z) and U(x, z) ≤ U(x, y)∨U(x, z) then by property
1., there exist u ∈ P such that U(x,u) = U(x, y) ∨U(x, z) and therefore, by Eq.
(10), U(x,u) ≤ U(x, y ∨ z). So, by property 3., u ≤ y ∨ z. Thus, because u ≥ y
and u ≥ z, we have that u = y ∨ z and consequently U(x,u) = U(x, y ∨ z). Hence,
U(x, y) ∨U(x, z) = U(x,u) = U(x, y ∨ z).

The prove that U(y ∨ z, x) = U(y, x) ∨U(z, x) is analogous.

Proof of Proposition 17

Proof. Let x, y, z ∈ P . Since, P is totally ordered, by a symmetric argument, it
is sufficient just consider that y ≤ z. So, U(x, y) ≤ U(x, z) and U(y, x) ≤ U(z, x).
Therefore, U(x, y) ∨ U(x, z) = U(x, z) = U(x, y ∨ z) and U(y, x) ∨ U(z, x) =

U(z, x) = U(y ∨ z, x).

Proof of Theorem 3

Proof. The axioms (KA1) to (KA4) follows from definition of join-semilattice
and least element, the axioms (KA5) and (KA6) from definition of pseudo
uninorm, the axiom (KA9) from Proposition 12, and the axioms (KA10) to
(KA13) from Proposition 18. Let x, y, z ∈ P . Then, since e ∈ ∆P , we have the
following cases:

1. Case x, y, z ∈ P e then, from Theorem 2, we have that U(x, y∨z) = x∨(y∨z) =
(x ∨ y) ∨ (x ∨ z) = U(x, y) ∨U(x, z).



2. Case y ∈ Pe and z ∈ P e then y ≤ z and therefore U(x, y ∨ z) = U(x, z) =

U(x, y) ∨U(x, z).
3. Case y ∈ P e and z ∈ Pe then z ≤ y and therefore U(x, y ∨ z) = U(x, y) =

U(x, y) ∨U(x, z).
4. Case y, z ∈ Pe then U(x, y ∨ z) ≤ U(x, y ∨ e) = U(x, y) and U(x, y ∨ z) ≤

U(x, z∨e) = U(x, z) and therefore, U(x, y∨z) ≤ U(x, y)∨U(x, z). So, because,
trivially U(x, y) ∨U(x, z) ≤ U(x, y ∨ z), then U(x, y) ∨U(x, z) = U(x, y ∨ z).

Therefore, the axiom (KA7) is satisfied for each x, y, z ∈ P . The axiom (KA8)
can be proved in analogous way.

Proof of Theorem 4

Proof. The axioms (KA1) to (KA4) follows from definition of join-semilattice
and least element, the axioms (KA5) and (KA6) from definition of pseudo
uninorm,the axioms (KA7) and (KA8) because U is a join morphism, the
axiom (KA9) from Proposition 12, and the axioms (KA10) to (KA13) from
Proposition 18.

Proof of Theorem 5

Proof. 1. By the axioms (KA5) and (KA6), U is associative and e is a neutral
element. Suppose that y ≤ z then U(x, z) = U(x, y + z) = U(x, y) + U(x, z)
and therefore U(x, y) ≤ U(x, z). Analogously is proved that if x ≤ y, then
U(x, z) ≤ U(y, z).

2. Let x ∈K. Then by (KO1) and (KO2), once 0 ≤ x we have that e ≤ x⋆.
3. If x /≤ e then by (KO3), U ∈ UeP and by previous item, x⋆ = e + U(x,x⋆) ≥
e +U(x, e) = e + x.
Now, if x ≤ e then U(x, e) ≤ e. So, by (KA12), we have that x⋆ = U(x⋆, e) ≤
e. But, once by previous item e ≤ x⋆, then x⋆ = e. So, if x ≤ e then x⋆ = e =
e + x.

4. (C1) follows from (KO1), (C3) follows from (KO4) and (C2) follows from
previous item. In fact, x ≤ x + e ≤ x⋆.

Proof of Proposition 19

Proof. Associativity: Let x, y, z ∈ P . Then, by equations (9) and (8), and the
associativity of U ,
Uφ(Uφ(x, y), z)
= φ−1(U(φ(φ−1(U(φ(x), φ(y)))), φ(z)))
= φ−1(U(U(φ(x), φ(y)), φ(z)))
= φ−1(U(φ(x), U(φ(y)), φ(z)))
= φ−1(U(φ(x), φ(φ−1(U(φ(y)), φ(z)))))
= Uφ(x,Uφ(y, z))

Isotonicity: Let x1, x2, y1, y2 ∈ P such that x1 ≤ x2 and y1 ≤ y2. Then by equation
(9), Equation (8) and isotonicity of U ,
Uφ(x1, y1) = φ

−1(U(φ(x1), φ(y1)))
≤ φ−1(U(φ(x2), φ(y2)))
= Uφ(x2, y2)



Neutral element: Let x ∈ P . Then by equation (9) and the existence of neutral
element for U (denoted by e), Uφ(x,φ−1(e)) = φ−1(U(φ(x), e)) = x. So,
φ−1(e) is the neutral element of Uφ.

Bound preserving: Since φ is bijective, there exists y ∈ P such that φ(y) = �.
Thus, once � ≤ y then by equation (8), φ(�) ≤ �. Analogously, we prove that
⊺ ≤ φ(⊺).

Joint (meet) morphism: Since x ≤ x ∨ y and y ≤ x ∨ y then φ(x) ≤ φ(x ∨ y)
and φ(y) ≤ φ(x ∨ y). So, φ(x) ∨ φ(y) ≤ φ(x ∨ y). On the other hand, since
φ is bijective, there exists z ∈ P such that φ(z) = φ(x) ∨ φ(y). Therefore,
φ(z) ≥ φ(x) and φ(z) ≥ φ(y). Hence, by Equation (8), z ≥ x and z ≥ y, i.e.
z ≥ x∨y, and z ≤ x∨y. Consequently, φ(x)∨φ(y) = φ(x∨y). The proof that
φ is a meet morphism (when ⟨P,≤⟩ is a meet-semilattice) is analagous.

Proof of Proposition 20

Proof. By Proposition 19, Uφ ∈ U
φ−1(e)
P .

(K1) Since, ⋆ is Klene opertaor for U and ϕ−1 is an automorphism and
therefore is a join morphism and isotone, φ−1(e)∨Uφ(x,x⍟) = φ−1(e)∨
φ−1(U(φ(x), φ(x)⋆)) =
φ−1(e ∨U(φ(x), φ(x)⋆)) ≤ φ−1(φ(x)⋆) = x⍟.

(K2) Analogous to (K1).

(K3) If Uφ(x, y) ≤ y then U(φ(x), φ(y)) ≤ φ(y). So, because ⋆ is a Kleene
operator based on U , U(φ(x)⋆, φ(y)) ≤ φ(y). Therefore, because φ−1 ∈
Aut⟨P,≤⟩, we have that Uφ(x⍟, y) ≤ y.

(K4) Analogous to (K3).

Proof of Proposition 21

Proof. (KA1) a+φ (b+φ c) = φ−1(φ(a)+(φ(b)+φ(c))) = φ−1((φ(a)+φ(b))+
φ(c)) = (a +φ b) +φ c.

(KA2) a +φ b = φ−1(φ(a) + φ(b)) = φ−1(φ(b) + φ(a)) = b +φ a.

(KA3) a +φ a = φ−1(φ(a) + φ(a)) = φ−1(φ(a)) = a.

(KA4) a +φ 0 = φ−1(φ(a) + 0) = φ−1(φ(a)) = a.

(KA5) Analogous to (KA1).

(KA6) Analogous to (KA4).

(KA7) a ⋅φ (b +φ c) = φ−1(φ(a) ⋅ (φ(b) + φ(c))) = φ−1((φ(a) ⋅ φ(b)) + (φ(a) ⋅
φ(c))) = (a ⋅φ b) +φ (a ⋅φ c).

(KA8) Analogous to previous item.

(KA9) Analogous to (KA4).

(KA10) 1 +φ (a ⋅φ a⍟) = φ−1(1 + (φ(a) ⋅ φ(a)⋆)) ≤ φ−1(φ(a)⋆) = a⍟

(KA11) Analogous to previous item.

(KA12) If a ⋅φ b ≤ b then φ−1(φ(a) ⋅φ(b)) ≤ b and so φ(a) ⋅φ(b) ≤ φ(b). Hence,
φ(a)⋆ ⋅ φ(b) ≤ φ(b) and therefore a⍟ ⋅φ b ≤ b.



(KA13) Analogous to previous item.
In addition, since for each x, y ∈K, we have that x ≤ x+ y and y ≤ x+ y then

(*) x∨y ≤ x+y, where x∨y is the supremum of x and y w.r.t. ≤. By [14] we have
that if a ≤ b then a+c ≤ b+c, and therefore, since x ≤ x∨y then x+y ≤ (x∨y)+y.
But, because y ≤ x ∨ y by Equation (1) (x ∨ y) + y = x ∨ y and therefore (**)
x+y ≤ x∨y. Hence, from (*) and (**), x+y = x∨y for each x, y ∈K. Analogously
we can prove that x ⋅ y = x ∧ y for each x, y ∈ K. Consequently, because φ is an
automorphism φ(0) = 0, φ(1) = 1, and it is a join and meet morphism and so
φ(x + y) = φ(x) + φ(y) and φ(x ⋅ y) = φ(x) ⋅ φ(y).
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1 Introduction

Dynamic epistemic logic [6, 12, 15] is a common way of describing agents’ knowledge
and informational changes. But nowadays, our intuition about the nature of agents’ rea-
soning and interaction tells us that both processes of operating with available knowledge
and obtaining a new one cannot always be effortless. This natural intuition demonstrates
that reasoning often becomes a resource consuming action. A lot of researchers of epis-
temic logic paid attention to this problem and found different approaches to formalising
the idea of resource-bounded agents [10]. The wide range of existing approaches, de-
scribing non-omniscient agents, consider resources as various cognitive limits.

Non-omniscience can be described through time- and memory-constrained agents
who do not necessarily know all the logical consequences of their knowledge. Some pa-
pers model such constraints through so-called inferential actions, which require agents
to take explicit inference steps, spending available resources to deduce the logical con-
sequences of their knowledge [17]. Other papers extend the idea of a bounded deliber-
ation process with resource consuming inference actions by introducing perception [4]
or rule-based models [14] and their effects on formation of agents’ beliefs. The idea of
resource-bounded agents, situated in agent–environment systems that takes into account
agents’ observations, beliefs, goals and actions, sounds promising both for philosophers
and computer scientists [2]. Most contemporary papers on resource-bounded reason-
ing would agree that modelling of non-omniscient agents does not mean modelling of
imperfect reasoners. On the contrary, a lot of papers argue that epistemic logic must
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formalise the idea that if the agent knows all necessary premises and either thinks hard
enough [8] or has enough time [3, 1], then they will know the conclusion. Thus, the
reasoning process itself can justifiably be considered as an ongoing time-consuming
[13], as well as a memory-consuming [9] process. This intuition bridges the gap be-
tween reasoning and computation process and sounds fruitful for AI research. While
this is a reasonable assumption which is worth studying, both time- and memory-based
approaches deal with ’inner’ obstacles of an agent’s deliberation process. Thus, even
existing papers studying resource constraints in agent-environment settings consider
resources as a tool of reasoning or obtaining new information from already available
agent’s knowledge. At the same time, a lot of real-life scenarios demonstrate that re-
sources can also be considered as an instrument of obtaining new, independent or al-
ready available, information from the outside. In other words, solving some tasks can
require getting additional information, which is not necessarily costless. Our main goal
in this paper is to consider logically omniscient reasoners who can interact with the en-
vironment (in the sense of an independent bystander) and obtain new information from
this environment by spending a certain amount of resources.

A similar attempt was made by Naumov and Tao [16]. Their paper describes budget-
constrained agents in epistemic settings. It catches the intuition that sometimes agents
have to spend their resources to obtain the knowledge of some fact. But since their
logic is static and describes resource constraints as a feature of the knowledge of the
operator itself, this approach violates the Negative Introspection axiom, so it requires to
be considered like a S4-like system. Nevertheless, this S4-like epistemic logic appears
to be complete, with respect to S5-like structures. Our paper aims to demonstrate that
reasoning about knowledge and informational change under budget constraints can be
described by an S5-like system if we consider this informational change explicitly in
DEL-style language.

We assume that agents can purchase information, spending some resources avail-
able to them. Intuitively, agents can ask a question” is A true?” and get a positive or
negative answer. Sometimes, this question can require some resources (e.g. money).
The first example that comes to mind these days obviously involves COVID-19. We
can easily imagine that Agent A can be COVID-positive without knowing about it. It
is also clear that Agent A can get this information by medical testing, which usually
requires some amount of money, say $20. In this situation, Agent A can buy an answer
to the question ’Am I infected?’ if her budget exceeds $20. To introduce the multi-agent
dimension in this example, let’s assume that Agent A is a professor at some university,
U . Nowadays it is common practice that professors are asked to work remotely. Imag-
ine that our university, U can relax these restrictions and allow working on campus
for those professors (agents) who can provide a negative COVID-test. It is also easy to
imagine that a university can have a list of all professors who took a test (for example,
this university can be in cooperation with some medical organisation). But the results of
these tests are available to professors only, due to the medical privacy. Thus, if Agent A
decides to take a test, she definitely obtains the result. At the same time U (1) does not
know if A is infected, but it also knows that (2) ’A knows she is infected or A knows
she is not infected’. But since this action requires $20, U also knows that (3) A had at
least $20 before testing, and if U knows that A had n1 or n2 (where n1, n2 ≥ 20), then
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(4) U knows that A has $(n1 − 20) or $(n2 − 20) now. We hope that this example is
clear and represents useful intuitions about resource-consuming informational updates
in a multi-agent setting. Thus, we intend to model situations in which agents can spend
resources in order to obtain an answer to some question. In our framework, the very fact
of the question is public. i.e. every agent knows that question is asked. But the answer
is private, so only one agent knows it. We also assume that resources can be understood
in some abstract way, similar to the idea of utility in economics. Thus, we can consider
money, effort or any other kind of agent’s utility as resources in our models. We build
our logic upon the standard S5 epistemic logic [12], enriched with linear inequalities
described in [11] to deal with costs of the formulas and agents’ budget. Then, we ex-
tend this logic with dynamic operator [?iA] combining ideas of public announcement
logic [6], contingency logic with arbitrary announcement [5] and some intuitions about
semi-private announcements. Section 2 of this paper deals with static epistemic logic
for reasoning about costs of formulas and agent’s budget. We demonstrate that this logic
is sound and complete. Section 3 provides a dynamic extension of static fragment which
allows us to reason about informational change for budget-constrained agents. We also
state a soundness and completeness result for dynamic fragment via standard reduction
argument and prove that both ELbc and DELbc are decidable.

2 Epistemic Logic for Budget-Constrained Agents

Here we present the syntax and semantics of the epistemic logic for budget-constrained
agents ELbc. In Section 3 we extend it with the dynamic operators for model updates.

2.1 Syntax

Let Prop = {p, q, . . . } be a countable set of propositional letters. Denote by LPL the
set of all propositional (non-modal) formulas defined by the following grammar (where
p ranges over Prop, other connectives are defined standardly):

A,B ::= p | ¬A | (A ∧B).

Definition 1 (The language ELbc). Let Agt = {i, j, . . . } be a finite set of agents. We
fix a set of constants Const = {cA | A ∈ LPL} ∪ {bi | i ∈ Agt}. It contains a constant
cA for the cost of each propositional formula A and a constant bi for the budget of each
agent i. Formulas of the language ELbc are defined by the following grammar:

φ,ψ ::= p | (z1t1 + . . .+ zntn) ≥ z | ¬φ | (φ ∧ ψ) | Kiφ,

where p ranges over Prop, i ∈ Agt, t1, . . . , tn ∈ Const and z1, . . . , zn, z ∈ Z.

Other Boolean connectives →,∨,↔,⊥ and ⊤ are defined in the standard way. The
dual operator for Ki is defined as K̂iφ ≡ ¬Ki¬φ. We will also use K?

i φ as an abbre-
viation for (Kiφ ∨ Ki¬φ). Note that we introduce the cost cA only for propositional
formulas A ∈ LPL. The logic with costs of arbitrary epistemic formulas is left for fu-
ture research. We deal with linear inequalities and use the same abbreviations as in [11].
Thus, we write t1 − t2 ≥ z for t1 + (−1)t2 ≥ z, t1 ≥ t2 for t1 − t2 ≥ 0, t1 ≤ z for
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−t1 ≥ −z, t1 < z for ¬(t1 ≥ z), and t1 = z for (t1 ≥ z) ∧ (t1 ≤ z). Thus, the lan-
guage ELbc allows us to express statements such as: “cp∧q ≥ 7”, “bi ≥ 5”, “2bi = bj”,
“Kc(bi + bj ≥ cp∨q)” etc.

The set of subformulas Sub(φ) of a formula φ is defined in the standard way; note
that if a constant cA occurs in φ then we do not count A as a subformula of φ.

2.2 Semantics

A model M of the logic ELbc has the components standard for the multi-modal logic
S5, namely, a non-empty set of states W , an epistemic accessibility relation ∼i for
each agent i ∈ Agt, and a valuation V : Prop → 2W . Besides, a model M contains
a function Cost that assigns to every propositional formula at each state its cost, and
a function Bdg that assigns to each agent i ∈ Agt at each state w ∈W the available
amount of resources.

Definition 2 (Kripke-style semantics).
A model is a tuple M = (W, (∼i)i∈Agt,Cost,Bdg, V ), where

– W is a non-empty set of states,
– ∼i ⊆ (W ×W ) is an equivalence relation for each i ∈ Agt,
– Cost : W × LPL −→ R+ is the (non-negative) cost of propositional formulas,
– Bdg : Agt×W −→ R+ is the (non-negative) bugdet of each agent at each state,
– V : Prop → 2W is a valuation of propositional variables.

Thus both the cost of a formula and the budget of an agent depend on a current
state. We use Bdgi(w) as an abbreviation for Bdg(i, w), where i ∈ Agt and w ∈W . In
order to formulate additional constraints on the function Cost, we need the following
notation. Let PL be the classical propositional logic. For any propositional formulas A
and B:

– A and B are called equivalent: A ≡ B iff ⊢PL A↔ B,
– A and B are called similar: A ≈ B iff A ≡ B or A ≡ ¬B.

We also impose the following conditions on the function Cost:

(C1) Cost(w,⊥) = Cost(w,⊤) = 0,
(C2) A ≈ B implies Cost(w,A) = Cost(w,B), for all A,B ∈ LPL and all w ∈W .

Definition 3. The truth ⊨ of a formula A at a state w ∈W of a model M is defined by
induction:
M, w ⊨ p iff w ∈ V (p),
M, w ⊨ ¬φ iff M, w ⊭ φ,
M, w ⊨ φ ∧ ψ iff M, w ⊨ φ and M, w ⊨ ψ,
M, w ⊨ Kiφ iff ∀w′ ∈W : w ∼i w

′ ⇒ M, w′ ⊨ φ,
M, w ⊨ (z1t1 + · · ·+ zntn) ≥ z iff (z1t′1 + · · ·+ znt

′
n) ≥ z, where for 1 ≤ k ≤ n,

t′k =

{
Cost(w,A), for tk = cA,

Bdgi(w), for tk = bi.

We refer to the class of all models satisfying all properties mentioned above as M.
We write ⊨M φ if the formula φ is valid in the class of models M.
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2.3 Soundness and Completeness

The axiomatisation of the logic ELbc is presented in Table 1. Here, (Ineq) is the set of
axioms for linear inequalities firstly described in [11] and used later for similar purposes
in [17].

Table 1. Proof system for ELbc

Axioms:
(Taut) All instances of propositional tautologies
(Ineq) All instances of the axioms for linear inequalities
(K) Ki(φ→ ψ) → (Kiφ→ Kiψ)
(T) Kiφ→ φ
(4) Kiφ→ KiKiφ
(5) ¬Kiφ→ Ki¬Kiφ
(Bd) bi ≥ 0
(≥1) cA ≥ 0
(≥2) c⊤ = 0
(≥3) cA = cB if A ≈ B, for all formulas A,B ∈ LPL

Inference rules:
(MP) From φ and φ→ ψ, infer ψ
(Neci) From φ infer Kiφ

Axioms (Ineq) allow us to prove all valid formulas about linear inequalities. These
axioms are presented in Table 2.

Table 2. Axioms for reasoning about linear inequalities

(I1) (a1t1 + · · ·+ aktk ≥ c) ↔ (a1t1 + · · ·+ aktk + 0tk+1) ≥ c)
(I2) (a1t1 + · · ·+ aktk ≥ c) → (aj1tj1 + · · ·+ ajk tjk ≥ c),

where j1, . . . , jk is a permutation of 1, . . . , k
(I3) (a1t1 + · · ·+ aktk ≥ c) ∧ (a′1t1 + · · ·+ a′ktk ≥ c′) →

→ (a1 + a′1)t1 + · · ·+ (ak + a′k)tk ≥ (c+ c′)
(I4) (a1t1 + · · ·+ aktk ≥ c) ↔ (da1t1 + · · ·+ daktk ≥ dc) for d > 0
(I5) (t ≥ c) ∨ (t ≤ c)
(I6) (t ≥ c) → (t > d), where c > d

Theorem 1 (Soundness). ELbc is sound w.r.t. M, i.e., ⊢ELbc
φ ⇒ ⊨M φ.

Proof. Straightforward.
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For the completeness proof, fix an ELbc-consistent formula φ. We start with the set
Γ = Sub(φ) of all subformulas of φ. Next, let Γ+ ⊇ Γ be the smallest set of formulas
such that

1. Γ+ is closed under single negation: if ψ ∈ Γ+ and ψ does not start with ¬, then
¬ψ ∈ Γ+,

2. (bi ≥ 0) ∈ Γ+, for each agent i ∈ Agt that occurs in Γ (in bi or Ki),
3. (cA ≥ 0) ∈ Γ+, for each constant cA that occurs in Γ ,
4. (c⊤ = 0) ∈ Γ+,
5. cA = cB ∈ Γ+ for all constants cA and cB occurring in Γ such that A ≈ B.

First, we build a finite canonical pre-model Mc = (W c, (∼c
i )i∈Agt, V

c) by the
construction similar to that used for the multi-agent logic S5:

– W c is the set of all maximal ELbc-consistent subsets of Γ+;
– x ∼c

i y iff, for all formulas ψ ∈ Γ+, we have Kiψ ∈ x iff Kiψ ∈ y;
– w ∈ V c(p) iff p ∈ w, for each propositional variable p ∈ Γ .

So far, Mc is a Kripke model, without the Costc and Bdgc functions. Thus it re-
mains to prove that both functions Costc and Bdgc can be defined.

Since every state w ∈ W c is ELbc-consistent, the set of all linear inequalities
contained in w is satisfiable, i.e., has at least one solution. Then we can easily con-
struct functions Costc(A,w) and Bdgci (w) that agree with this solution: for formulas
A ∈ LPL such that cA occurs in Γ+, we put Costc(A,w) to be the real that corre-
sponds to cA in that solution; for other formulas B ∈ LPL, if B ≈ A for some formula
A such that cA is in Γ , then we put Costc(B,w) := Costc(A,w). Thus we can enforce
that for all w ∈W c and all A ∈ LPL such that cA occurs in Γ+ it holds that
(1) Costc(A,w) ≥ 0 for all formulas A ∈ LPL such that cA occurs in Γ+, by the
construction of Γ+ and (≥1) axiom,
(2) Costc(⊤, w) = 0, by the construction of Γ+ and (≥2) axiom,
(3) Costc(A,w) = Costc(B,w) for all A,B ∈ LPL such that A ≈ B, by (≥3) axiom.

Similarly, we construct Bdgc function such that for each w ∈ W c and each i ∈
Agt, Bdgci (w) agrees with existing solution of linear inequalities, contained in w. This
construction is well-defined and for any w ∈W c and any i ∈ Agt, it holds that
(1) Bdgci (w) ≥ 0 by axiom (Bd) and the construction of Γ+,
(2) Bdgci (w) ≥ Cost∗(A) iff (bi ≥ cA) ∈ w, for all bi, cA in Γ .

Thus, we obtained a finite canonical model Mc = (W c, (∼c
i )i∈Agt,Cost

c,Bdgc, V c).
As we have already demonstrated, this model satisfies the properties (C1) and (C2). It
is also clear that for all i ∈ Agt, ∼c

i is an equivalence relation on W c.

Lemma 1 (Truth Lemma). For any ψ ∈ Γ+, we have: Mc, w ⊨ ψ ⇐⇒ ψ ∈ w.

Proof. Induction on ψ. Cases for p ∈ Prop and Boolean connectives: trivial.

Case Kiψ:
Mc, w ⊨ Kiψ iff ∀w′ : w ∼∗

i w
′ ⇒ M c, w′ ⊨ ψ by Definition 3. ∀w′ : w ∼∗

i w
′ ⇒

M c, w′ ⊨ ψ iff ∀w′ : w ∼∗
i w

′ ⇒ ψ ∈ w′ by previous induction step. ∀w′ : w ∼∗
i

w′ ⇒ ψ ∈ w′ iff Kiψ ∈ w by the construction of ∼∗
i .
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Case (z1t1 + · · ·+ zntn) ≥ z:
Mc, w ⊨ (z1t1 + · · · + zntn) ≥ z iff (z1t′1 + · · · + znt

′
n) ≥ z, where t′1, . . . , t

′
n are

represented by Cost∗(A) and Bdg∗i (w) for the corresponding constants cA and bi that
occur in (z1t1 + · · ·+ zntn) ≥ z. By the construction of Cost∗ and Bdg∗, it also holds
that (z1t′1 + · · ·+ znt

′
n) ≥ z iff (z1t1 + · · ·+ zntn) ≥ z ∈ w.

Theorem 2 (Completeness). ELbc is complete w.r.t. M, i.e., ⊨M φ iff ⊢ELbc
φ.

Proof. The right-to-left direction follows from Theorem 1. For the left-to-right direc-
tion, consider a formula φ such that ⊬ELbc

φ. Construct a model Mc for ¬φ. From
Lemma 1 it is clear that ∃w ∈ W ∗ such that Mc, w ⊨ ¬φ. Then Mc, w ⊭ φ. It is also
clear that Mc ∈ M, by the construction of Mc, so ⊭M φ.

Here we should also mention that in ELbc we intentionally impose as less semantic
restrictions as possible to deal with the most general case. In particular, we assume that
it is possible that an agent does not know her own budget. But this restriction can be
imposed by adding the following axiom to ELbc:

(bi = z) → Ki(bi = z) (Kb)

Let MKb be a subclass of M such that for anyw1, w2 ∈W : w1 ∼i w2 ⇒ Bdgi(w1) =
Bdgi(w2). Then it is straightworfard to prove the following result.

Theorem 3 (Completeness). The logic ELbc + Kb is complete with respect to MKb,
i.e., ⊨MKb φ ⇔ ⊢ELbc+Kb φ.

Theorem 4 (Decidability). The satisfiability problem for ELbc is decidable.

Proof. In this proof we follow the technique similar to those from [7]. From the proof
of Theorem 2 it follows that a formula φ is satisfiable iff it is satisfiable in a model
M ∈ M with at most 2|Γ

+| states. However, since these models include Cost and Bdg
functions there are infinitely many of them. In order to restrict the set of structures to
check to be finite, we will consider pseudo-models which do not have Cost and Bdg, but
it is easy to check whether a corresponding functions exist. We call pseudo-models for
which both Cost and Bdg exist solvable. The existence of one of such solvable pseudo-
models satisfying φ will guarantee the existence of a proper model (for which Cost and
Bdg are defined) that satisfies φ.

Consider a set Γ+ defined in the proof of Theorem 2 and let a set Sum(φ) be a set

of all elements of Γ+ of the form
n∑

k=1

zktk ≥ z. For every l ≤ 2|Γ
+| we consider a

pseudo-model M = (W,∼i, S, V ), where W,∼i and V are defined in a standard way
and S is defined as follows:
S :W × Sum(φ) −→ {true, false}.

Note that there are only finitely many pseudo-models for each l. They are not mod-
els of our logic, but we can check if an element of Γ+ holds in some states of this
pseudo-model using the ⊨′ relation which is defined in a trivial way, except the case for
n∑

k=1

zktk ≥ z:

M, w ⊨
n∑

k=1

zktk ≥ z iff S(w,
n∑

k=1

zktk ≥ z) = true.
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We will consider only those pseudo-models M such that M, w ⊨′ φ for some
w ∈W . For each such M we want to check whether M can be extended to a structure
M ∈ M of our logic. In other words, we want to check if S can be replaced by a
tuple (Cost,Bdg) that agrees with S and for every w ∈ W and every ψ ∈ Sum(φ) we
have M, w ⊨ ψ iff S(w,ψ) = true. It is straightforward to check that for such M it
holds that M, w ⊨ χ iff M, w ⊨′ χ for every χ ∈ Γ+(φ). For this purpose we consider
special system of linear inequalities to define Cost(A,w) and Bdgi(w) for each i ∈ Agt
and each w ∈ W . We use the variables of the form cχ,w and bi,w which represent the
values of Cost(χ,w) and Bdgi(w) respectively. Now we are ready to define a system
of linear inequalities:
(1) cχ,w ≥ 0 for each χ ∈ LPL ∩ Γ+ and w ∈W ,
(2) bi,w ≥ 0 for each i ∈ Agt and each w ∈W ,
(3) c⊤,w = 0 for each w ∈W ,
(4) cχ,w = cχ′,w for each w ∈W , where χ, χ′ ∈ LPL ∩ Γ+ such that χ ≈ χ′,

(5)
n∑

k=1

zktk ≥ z, where each occurrence of cA and bi are replaced with cA,w and bi,w

for every formula
n∑

k=1

zktk ≥ z such that S(w,
n∑

k=1

zktk ≥ z) = true,

(6)
n∑

k=1

zktk < z, where each occurrence of cA and bi are replaced with cA,w and bi,w

for every formula
n∑

k=1

zktk ≥ z such that S(w,
n∑

k=1

zktk ≥ z) = false.

For our purposes it is sufficient to find at least one solution of such system of equa-
tions and inequalities. Note that this system is finite and the problem of solving systems
of inequalities is decidable. So, given a pseudo-model we can check if this pseudo-
model is solvable (by solving a corresponding system of inequalities). It is straightfor-
ward to see that if there is a solvable pseudo-model for φ, then φ is satisfiable.

The proof for other direction is trivial, since the canonical model for φ gives rise
to a solvable pseudo-model with 2|Γ

+| states. Then if φ is satisfiable, then there is a
solvable pseudo-model for φ with l ≤ 2|Γ

+| states.
We have shown that φ is satisfiable iff there is a solvable pseudo-model for φ with

l ≤ 2|Γ
+| states. So, we can check satisfiablity of φ examining finitely many choices of

l for which there are only finitely many pseudo-models and each pseudo-model can be
verified to be solvable in a finite number of steps.

3 Dynamic Epistemic Logic for Budget-Constrained Agents

The dynamic language DELbc extends the static language ELbc with a dynamic operator
[?iA]φ. A formula [?iA]φ can be read as "φ is true after i’s question whetherA is true".

3.1 Syntax

Definition 4. The formulas of DELbc are defined by the following grammar:

φ,ψ ::= p | (z1t1 + · · ·+ zntn) ≥ z) | ¬φ | (φ ∧ ψ) | Kiφ | [?iA]φ,
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where p ∈ Prop, A ∈ LPL, i ∈ Agt, t1, . . . , tn ∈ Const and z1, . . . , zn, z ∈ Z.

The dual operator ⟨?iA⟩φ can be defined in a standard way: ⟨?iA⟩φ ≡ ¬[?iA]¬φ.

3.2 Semantics

The main features of the operator [?iA]φ are: (1) every agent knows that the question
was asked, i.e., the very fact of the question is public, (2) only the agent i knows the
answer, i.e., the answer is private, (3) the question requires the agent i to spend some
amount of resources. All of these features will be described formally in this section.

We extend the truth relation ⊨ introduced in Definition 3 to the dynamic operator
[?iA]φ as follows.

Definition 5. Given a model M = (W, (∼i)i∈Agt,Cost,Bdg, V ) and a state w ∈W ,

M, w ⊨ [?iA]φ iff M, w ⊨ (bi ≥ cA) implies M?iA, w ⊨ φ.

Here M?iA is a model obtained from M by the update that corresponds to the
following action: “the agent i asked whether the propositional formula A is true and
spent for this the amount of resources Cost(A)”; the updated model is described in the
next definition. We will use notation: [A]M := {w ∈W | M, w ⊨ A}.

Definition 6. Given a model M = (W, (∼i)i∈Agt,Cost,Bdg, V ), an updated model is
a tuple M?iA = (W ?iA, (∼?iA

j )j∈Agt,Cost
?iA,Bdg?iA, V ?iA), where

– W ?iA = {w ∈W | M, w |= bi ≥ cA},

– ∼?iA
j = (W ?iA ×W ?iA) ∩ ∼∗

j ,

where ∼∗
j =

{
∼j

⋂(
([A]M × [A]M)

⋃
([¬A]M × [¬A]M)

)
if j = i,

∼j otherwise,
– Cost?iA(B) = Cost(B), for all propositional formulas B,

– Bdg?iAj (w) =

{
Bdgj(w)− Cost(A,w), if j = i,

Bdgj(w), otherwise,
– V ?iA(p) = V (p) ∩W ?iA.

Intuitively, the update [?iA]φ of model M firstly removes all states of M in which
agent i does not have a sufficient amount of resources to ask about A. This can be
justified by the fact that other agents do not necessarily know i’s budget, but when they
observe the fact that i actually asks about the truth of A, it no longer makes sense to
consider the states with (bi < cA) as possible ones. Secondly, when i asks “isA true?”,
she gets either “Yes” or “No” and we consider this fact to be known by all agents. Then,
after this update, the agent i necessarily distinguishes any two states of M that do not
agree on the valuation of A. But since the actual answer is available only to the agent i,
the epistemic relations of other agents remain the same, only taking into account that
some states have been removed. This update does not affect the costs of formulas and
budgets of all agents except i. Budget of i decreases by the cost of A after [?iA]. As
one can see, all of these assumptions sound quite natural.
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Consider an example with two agents i and j. Let pi stand for ’i is COVID-positive’
and pj stands for ’j is COVID-positive’. Assume that the cost of the test is 20 resources
in all possible worlds (M ⊨ cpi = 20 ∧ cpj = 20). If we also assume that i decides to
make the test ([?ipi]), then the semantics of DELbc describes this situation as presented
in Figure 1.

pi,pj
25,10

w1

pi,pj
20,10

w2

pi,pj
30,10

w3

pi,pj
15,20

w4

i, j

i, j

i, j

i, j [?ipi]
=⇒

pi,pj
5,10

w1

pi,pj
0,10

w2

pi,pj
10,10

w3

j

i, j

Fig. 1. Initial model M and updated model M?ipi

Note that an agent does not necessarily knows even her own budget. The following
formulas hold in w1:

– M, w1 ⊨ ¬Kipi
– M?ipi , w1 ⊨ Kipi
– M?ipi , w1 ⊨ ¬Kjpi
– M?ipi , w1 ⊨ KjK

?
i pi

– M, w1 ⊨ ¬Ki(bi ≥ 20)
– M?ipi , w1 ⊨ Ki(bi ≥ 0)
– M, w1 ⊨ ¬Kj(bj = 10)
– M?ipi , w1 ⊨ Kj(bj = 10)

3.3 Some Valid Formulas

Here we present some examples of valid formulas w.r.t. the proposed semantics.

Proposition 1. ⊨ (bi ≥ cA) ↔ ⟨?iA⟩⊤.

Proof. M, w ⊨ ⟨?iA⟩⊤ is equivalent to M, w ⊨ ¬[?iA]⊥ by definition of ⟨?iA⟩.
Then M, w ⊨ ¬[?iA]⊥ is equivalent to M, w ⊨ (bi ≥ cA) and M?iA, w ⊨ ⊤. But
since w ∈ W ?iA iff M, w ⊨ (bi ≥ cA), then M?iA, w ⊨ ⊤ is also equivalent to
M, w ⊨ (bi ≥ cA).

Proposition 2. ⊨ ⟨?iA⟩φ → [?iA]φ.

Proof. As we mentioned above, M, w ⊨ ⟨?iA⟩φ is equivalent to M, w ⊨ (bi ≥ cA)
and M?iA, w ⊨ φ. This conjunction obviously implies that M, w ⊨ (bi ≥ cA) ⇒
M?iA, w ⊨ φ.
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Proposition 3. ⊨ [?iA]K
?
iA.

Proof. It is clear that w ∼?iA w′ implies (M, w ⊨ A and M, w′ ⊨ A) or (M, w ⊨ ¬A
and M, w′ ⊨ ¬A) by Definition 6. Then M, w ⊨ (bi ≥ cA) implies M?iA, w ⊨
(KiA ∨Ki¬A).

3.4 Soundness and Completeness

Axiomatization of DELbc can be obtained by adding the reduction axioms from Table 3
to the axiomatization of ELbc. The notation

(
(z1t1 + · · · + zntn) ≥ z)

)[bi\(bi−cA)]

means that all occurrences of bi in (z1t1+ · · ·+zntn) ≥ z are replaced with (bi − cA).

Table 3. Reduction axioms and inference rules

(Rp) [?iA]p↔ (bi ≥ cA) → p
(R≥) [?iA]

(
(z1t1 + · · ·+ zntn) ≥ z)

)
↔ (bi ≥ cA) →

→
(
(z1t1 + · · ·+ zntn) ≥ z)

)[bi\(bi−cA)]

(R¬) [?iA]¬φ↔ (bi ≥ cA) → ¬[?iA]φ
(R∧) [?iA](φ ∧ ψ) ↔ [?iA]φ ∧ [?iA]ψ
(RKj ) [?iA]Kjφ↔ (bi ≥ cA) → Kj [?iA]φ, where i ̸= j
(RKi ) [?iA]Kiφ↔ (bi ≥ cA) →

→
((
A→ Ki(A→ [?iA]φ)

)
∧
(
¬A→ Ki(¬A→ [?iA]φ)

))
(Rep) From ⊢ φ↔ ψ, infer ⊢ [?iA]φ↔ [?iA]ψ

Proposition 4. Axioms (Rp), (R¬), and (R∧) and inference rule Rep are sound w.r.t.
M.

Proof. Trivial.

Lemma 2. For i ̸= j is holds that w ∼?iA
j w′ iff w ∼j w

′, M, w ⊨ (bi ≥ cA), and
M, w ⊨ (bi ≥ cA).

Proof. Follows straightforward from Definition 6.

Proposition 5. For any model M and any point w ∈W , it holds that

M, w ⊨ [?iA]Kjφ iff M, w ⊨ (bi ≥ cA) → Kj [?iA]φ, where i ̸= j.

Proof. (⇒) Let M, w ⊨ [?iA]Kjφ (1) and M, w ⊨ (bi ≥ cA) (2). From (1), M, w ⊨
(bi ≥ cA) implies M?iA, w ⊨ Kjφ (1.1) by Definition 5. Then M?iA, w ⊨ Kjφ

from (1.1) and (2). Then ∀w′ : (w ∼?iA
j w′) ⇒ M?iA, w′ ⊨ φ by Definition 3.

This fact together with Lemma 2 implies that ∀w′(w ∼j w
′): M, w′ ⊨ (bi ≥ cA) ⇒

M?iA, w′ ⊨ φ. This is equivalent to M, w ⊨ Kj [?iA]φ, by Definition 3 and Defini-
tion 5.
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(⇐) The case for M, w ⊭ (bi ≥ cA) is trivial. Consider only the case for M, w ⊨
Kj [?iA]φ. Then ∀w′(w ∼j w

′) : M, w′ ⊨ (bi ≥ cA) ⇒ M?iA, w′ ⊨ φ. By Lemma 2
it holds that ∀w′ : w ∼?iA

j w′ ⇒ M?iA, w′ ⊨ φ. By Definition 3, M?iA, w ⊨ Kjφ
and hence M, w ⊨ [?iA]Kjφ.

Lemma 3.

– w ∼?iA
i w′ iff w ∼i w

′ (1), M, w ⊨ (bi ≥ cA) (2.1), M, w′ ⊨ (bi ≥ cA) (2.2) and
w ≈A w′ (3), where w ≈A w′ holds if either both M, w ⊨ A and M, w′ ⊨ A hold
or both M, w ⊨ ¬A and M, w′ ⊨ ¬A hold,

– M, w ⊨ A iff M?iA, w ⊨ A, where A is a propositional formula.

Proof. Follows straightforwardly from Definition 6.

Proposition 6. For any model M and any point w ∈W , we have:

M, w ⊨ [?iA]Kiφ iff M, w ⊨ (bi ≥ cA) →
∧

A′∈{A,¬A}

(
A′ → Ki(A

′ → [?iA
′]φ)

)
.

Proof. (⇒) Let M, w ⊨ [?iA]Kiφ (1) and M, w ⊨ (bi ≥ cA) (2). From (1), (2)
and Definition 5 we get M?iA, w ⊨ Kiφ. Then ∀w′(w ∼?iA

i w′) ⇒ M?iA, w′ ⊨ φ.
Assume that M, w ⊨ A. Then by Lemma 3 it follows that ∀w′ : w ∼i w

′ and M, w′ ⊨
A and M, w′ ⊨ (bi ≥ cA) implies M?iA, w′ ⊨ φ. This is equivalent to M, w ⊨
Ki(A → [?iA]φ) by Definition 3 and Definition 5. Then, from our assumption we
proved that M, w ⊨ A→ Ki(A→ [?iA]φ). By a similar argument, one can show that
M, w ⊨ ¬A→ Ki(¬A→ [?iA]φ).
(⇐) The case for M, w ⊭ (bi ≥ cA) is trivial. Consider only the case for M, w ⊨∧
A′∈{A,¬A}

(
A′ → Ki(A

′ → [?iA
′]φ)

)
. Assume that M, w ⊨ A. Then M, w ⊨

Ki(A → [?iA]φ). Similarly, assuming M, w ⊨ ¬A entails M, w ⊨ Ki(¬A →
[?iA]φ). Then for all w′, such that (w ∼i w

′) and w′ agrees with w on the valuation of
A it holds that M, w′ ⊨ [?iA]φ and hence M, w′ ⊨ (bi ≥ cA) implies M?iA, w′ ⊨ φ.
Then by Lemma 3 it holds that ∀w′ : w ∼?iA

i w′ ⇒ M?iA, w′ ⊨ φ. And hence
M?iA, w ⊨ Kiφ. By Definition 5, the last claim implies M, w ⊨ [?iA]Kiφ.

Proposition 7. Axiom (R≥) is sound w.r.t. M

Proof. It is clear that M, w ⊨ [?iA](z1t1 + · · · + zntn) ≥ z iff M, w ⊨ (bi ≥ cA)
implies M?iA, w ⊨ (z1t1 + · · · + zntn) ≥ z by Definition 5. Note that M?iA, w ⊨
(z1t1+· · ·+zntn) ≥ z is equivalent to M, w ⊨ (z1t

∗
1+· · ·+znt∗n) ≥ z, where t∗k = tk

for tk = cA or tk = bj . And t∗k = tk + Cost(A) for tk = bi since Cost?iA(B) =

Cost(B), Bdg?iAj (w) = Bdgj(w) for i ̸= j and Bdg?iAi (w) = Bdgi(w) − Cost(A).
Then M, w ⊨ [?iA](z1t1 + · · · + zntn) ≥ z iff M, w ⊨ (bi ≥ cA) implies M, w ⊨
[(z1t1 + · · ·+ zntn) ≥ z)][bi\(bi−cA)].

Theorem 5 (Soundness). DELbc is sound w.r.t. M, i.e. ⊢DELbc
φ =⇒ ⊨M φ

Proof. Follows from Proposition 4 – Proposition 7.
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Theorem 6 (Completeness). DELbc is complete w.r.t. M, i.e. ⊢DELbc
φ iff ⊨M φ

Proof. Left-to-right direction follows from Theorem 5. The other direction holds by
Theorem 2 and the standard for dynamic epistemic logic completeness via reduction
argument.

Theorem 7 (Decidability). The satisfiability problem for DELbc is decidable.

Proof. This result is straightforward since any DELbc formula can be translated into
ELbc formula in finitely many steps by the rules presented in Table 3 and the decidability
of ELbc is demonstrated in Theorem 4.

4 Combination of DELbc and PAL

The language DELbc! extends the language DELbc with a standard operator for public
announcement [!φ]. A formula [!φ]ψ stands for "after public announcement of φ, it
holds that ψ ".

Definition 7. The formulas of DELbc! are defined by the following grammar:

φ,ψ ::= p | (z1t1 + · · ·+ zntn) ≥ z) | ¬φ | (φ ∧ ψ) | Kiφ | [?iA]φ, | [!φ]ψ

where p ∈ Prop, A ∈ LPL, i ∈ Agt, t1, . . . , tn ∈ Const and z1, . . . , zn, z ∈ Z.

Definition 8. M, w |= [!φ]ψ ⇐⇒ M, w |= φ ⇒ M!φ, w |= ψ, where M is defined
in Definition 2 and M!φ is a model M restricted to φ-worlds.

Rational question We will call the question rational if the agent doesn’t know the
answer to this question. We can express the condition for a rational question in DELbc!
as [?riA]φ := [!¬K?

iA][?iA]φ. A formula [?riA]φ can be read as "φ is true after i’s
rational question whether A is true".

Example [3 cards puzzle] From a pack of three known cards X,Y, Z, Alice, Bob and
Cath each draw one card. Initially, all agents has zero points. If an agent has X or Y ,
then its score increases by one point. Also, from a pack of three known card 1, 0, 0 each
agent draws one card. If an agent has 1, then its score increases by one point, 0 does
not change anything. An agent may ask a question publicly and get an answer (yes or
no) privately. The cost of any question is 1 point. Bob asks: "Whether Cath has the card
Y ?". Alice says "I know that my points and Bob’s points are different". Cath says "I
know the cards".

We can represent the initial situation with a Figure 2. The sequence of updates can
be formalized as follows:

⟨?rbYc⟩⟨!Ka(ba ̸= bb)⟩⟨!Kc(XY Z)?⟩⊤

Here Ki(XY Z)? := K?
iX? ∧K?

i Y? ∧K?
i Z? and K?

iX? := K?
iXa ∧K?

iXb ∧K?
iXc

(similarly for Y and Z). The results of updates are presented in Figure 3. Hence, the
only one possible world satisfies this series of updates.
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Y XZ
111

ZXY
012

XZY
102

Y ZX
102

XY Z
111

ZY X
012

Y XZ
120

ZXY
021

XZY
111

Y ZX
111

XY Z
120

ZY X
021

Y XZ
210

ZXY
111

XZY
201

Y ZX
201

XY Z
210

ZY X
111

b

a

c

b

a

c ca

b

a a

a a

a a

b

a

c

b

a

c ca

b

c c

c c

c c

b

a

c

b

a

c ca

b

b b

b b

b b

Fig. 2. Model for "3 cards" puzzle. Reflexivity, symmetry and transitivity are assumed.

Axiomatisation The sound and complete axiomatisation for DELbc! can be obtained as
a combination of DELbc and PAL (see [18]) proof systems with an additional reduction
axiom: [!φ]((z1t1 + · · ·+ zntn) ≥ z) ↔ (φ→ (z1t1 + · · ·+ zntn) ≥ z)

5 Discussion

In this paper, we present ELbc, a static epistemic logic for budget-constrained agents,
and provide its sound and complete axiomatisation. Then we present DELbc, a dynamic
epistemic logic for budget-constrained agents, which extends ELbc with dynamic opera-
tor [?iA]φ. For the dynamic fragment, we provide sound reduction axioms demonstrat-
ing DELbc completeness via a reduction argument. The proposed logics are sufficiently
expressive to deal with non-trivial epistemic scenarios involving reasoning about costs
of propositional formulas and agents’ budgets. In addition, DELbc is able to describe the
semantics of a special class of questions. These questions can be asked publicly, but the
answer is available only to the asking agent. Moreover, to get an answer, an agent must
spend some resources, thus decreasing her budget. This gives rise to a new direction of
research in the field of reasoning about resource-bounded agents in multi-agent systems
allowing to formalise not only inner or cognitive resources, but also external resources
as obstacles in the process of obtaining new information from the environment.

It is worth noting that we make some assumptions about the properties of Cost and
Bdg functions. Firstly, we assume that costs of formulas depend on a particular state of
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?rbYc
==⇒

Y XZ
101

ZXY
002

Y XZ
110

ZXY
011

XZY
101

Y ZX
101

Y XZ
200

ZXY
101

c

a

a

a
ca

c c

b b

!Ka(ba ∕=bb)
=======⇒

XZY
101

Y XZ
200

ZXY
101

c !Kc(XY Z)?
=======⇒

Y XZ
200

Fig. 3. Models for "3 cards" puzzle in a series of updates. Reflexivity, symmetry and transitivity
are assumed.

a model, i.e. some formula can have different costs in different states. This assumption
allows us to model situations in which an agent does not necessarily know the cost of
some formula. Our second assumption is that agents do not necessarily know the budget
of other agents as well as their own. But this assumption can be eased by introducing
additional axioms as we demonstrate in Theorem 6. Our last assumption deals with the
relationship between the costs of different formulas. The fact that equivalent formulas
must have equal costs seems obvious. It is also plausible that Cost(A) must be equal
to Cost(¬A), since asking questions “Is A true?” and “Is ¬A true?” can be considered
as the same informational action. But these are the only constraints on the Cost func-
tion we imposed in this paper. It remains an open question how to deal with Boolean
connectives in the sense of their costs. As a future work, one of our aims is to deal
with this aspect. For example, it looks quite natural to consider the following property:
cA + cB ≥ cA◦B , where ◦ is any Boolean connective.

As for the DELbc extension, it is natural to introduce additional dynamic modalities:
an operator [?GA]ψ which involves sharing resources among a group of agents, G and
an operator ⟨?ni ⟩φ for existential quantification over updates (there is a propositional
formula, A, such that the cost of A is at most, n, and it is true that ⟨?iA⟩φ). This would
allow us to define a concept such as n-knowability, meaning that φ is knowable given
n resources. Finally, in future work, we plan to establish complexity results for the
satisfiability problem and investigate model-checking algorithms for our logics.

Acknowledgements Support from the Basic Research Program of the National Re-
search University Higher School of Economics is gratefully acknowledged.
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Abstract. In the paper, we study the dynamics of coalitional ability by
proposing an extension of coalition logic (CL). CL allows one to reason
about what a coalition of agents is able to achieve through a joint ac-
tion, no matter what agents outside of the coalition do. The proposed
dynamic extension is inspired by dynamic epistemic logic, and, in partic-
ular, by action models. We call the resulting logic coalition action model
logic (CAML), which, compared to CL, includes additional modalities
for coalitional action models. We investigate the expressivity of CAML,
and provide a complexity characterisation of its model checking problem.

Keywords: Dynamic Coalition Logic · Coalition Logic · Dynamic Epis-
temic Logic · Action Model Logic.

1 Introduction

Coalition logic (CL) [18, 17] is one of the most well-known formalisms for rea-
soning about strategic abilities of groups of agents in the presence of opponents.
Modalities 〈〈C〉〉ϕ of CL express the fact that ‘there is a joint action by agents
from coalition C such that no matter what agents outside of the coalition do
at the same time, ϕ will be true’. CL was conceived as a formal language for
strategic games, and constructs 〈〈C〉〉ϕ characterise the existence of a winning
strategy for agents in C.

One way to approach models of CL is to view them as protocols or contracts
specifying what agents can and cannot do in different states. In this paper, we
propose an extension of CL, which we call coalition action model logic (CAML),
that includes modalities for updating those models. Such updates are carried out
with respect to action models that are expressed in the language with formulas
[Ms]ϕ meaning ‘after executing action model Ms, ϕ is the case’.

In creating CAML we followed the lead of dynamic epistemic logic (DEL) [11],
and, in particular, of action model logic (AML) [9, 11]. Action models in AML
model various epistemic events that can influence agents’ knowledge about facts
of the world and about knowledge of other agents. In a similar vein, coalitional
action models of CAML can influence strategic abilities of coalitions of agents.
On a more general scale, we hope that CAML will be a step towards a study
of dynamic coalition logic (DCL). To make the link between DEL and DCL
even more explicit, we can say that while DEL captures the the dynamics of
knowledge, DCL should be able to capture the dynamics of ability.
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CAML is not the first dynamic coalition logic. In [12] the authors proposed
dictatorial dynamic coalition logic (DDCL) that was inspired by arrow update
logic [15] and relation-changing logics [6]. DDCL updates strategic abilities of
single agents by granting them dictatorial powers or revoking such powers. Com-
pared to DDCL, action models of CAML allow for more fine-tuned updates that
may affect more than one agent in various ways. On the other hand, modalities
of CAML neither grant agents new actions they have not had before, nor remove
such actions. Thus, coalitional action models can be viewed as prescriptions of
how protocols or contracts between agents should be modified while taking into
account what agents actually can and cannot do.

The implementation of an action model in CAML is not, however, merely a
restriction (submodel) of the initial model. The action model might prescribe sev-
eral different modifications compatible with the same state in the initial model,
and the resulting updated model might have more states than the initial one.
We capture this by using a definition of a product update very similar to the
one used in AML. Restrictions on transition systems corresponding to policies,
norms, or social laws is far from a new idea [20, 21], and logical formalisms for
reasoning about such restrictions have been extensively studied, particularly us-
ing systems based on computation tree logic (CTL) [3]. In [4] a language similar
to CL is used: an expression of the form 〈C〉ϕ, where C is a coalition and ϕ is a
temporal formula, expresses the fact that if coalition C complies with the nor-
mative system, then ϕ will be true. Here, formulas are interpreted in the context
of a single, given, restriction on legal actions, and although one can quantify
over different parts of that restriction by varying the coalition C, the resulting
submodel will always be a restriction of the initial model. The conceptual over-
lap notwithstanding, CAML is significantly different: as mentioned earlier, the
updated models, obtained using action models, are not necessarily submodels,
and the underlying models are CL models with joint actions rather than Kripke
models of CTL.

After we briefly present necessary background information on CL in Section
2, we introduce CAML in Section 3. In Section 4 we show that CAML is strictly
more expressive than CL. This result shows a crucial difference between AML
and CAML: whereas the former is as expressive as the underlying epistemic
logic, and thus completeness of AML follows trivially from reduction axioms,
we cannot have reduction axioms for CAML. Moreover, we claim that CAML is
incomparable to alternating-time temporal logic (ATL) [5]. Added expressivity
of CAML comes at a price. In Section 5 we show that the complexity of the
model checking problem jumps from P for CL to PSPACE -complete for CAML.
Finally, we conclude in Section 6.

2 Language and Semantics of Coalition Logic

In this section we briefly provide all the necessary background information on
coalition logic [2, 17]. Let A be a finite set of agents, and P be a countable set
of propositional variables.
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Definition 1. The language of coalition logic CL is defined by BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ

where p ∈ P and C ⊆ A. Formulas 〈〈C〉〉ϕ are read ‘coalition C can force ϕ’. We
denote A \C as C. The dual of 〈〈C〉〉ϕ is [[C]]ϕ := ¬〈〈C〉〉¬ϕ. We will call subsets
of A ‘coalitions’, and we will also call complements of C, C, ‘the anti-coalition’.

The semantics of CL is given with respect to concurrent game models. A
concurrent game model (CGM), or a model, is a tuple M = (S,Act, act, out, L).
S is a non-empty set of states, and Act is a non-empty set of actions.

The function act : A × S → 2Act \ ∅ assigns to each agent and each state a
non-empty set of actions. A C-action at a state s ∈ S is a tuple αC such that
αC(i) ∈ act(i, s) for all i ∈ C. The set of all C-actions in s is denoted by act(C, s).
We will also write αC1 ∪ αC2 to denote a C1 ∪ C2-action with C1 ∩ C2 = ∅.

A tuple of actions α = 〈α1, . . . , αk〉 with k =| A | is called an action profile.
An action profile is executable in state s if for all i ∈ A, αi ∈ act(i, s). The set
of all action profiles executable in s is denoted by act(s). An action profile α
extends a C-action αC , written αC v α, if for all i ∈ C, α(i) = αC(i).

The function out assigns to each state s and each α ∈ act(s) a unique output
state. We write Out(s, αC) for {out(s, α) | α ∈ act(s) and αC v α}. Intuitively,
Out(s, αC) is the set of all states reachable by action profiles that extend some
given C-action αC . Finally, L : S → 2P is the valuation function.

We will also denote a CGM M with a designated, or current, state s as Ms,
and will sometimes call it a pointed model. We call M finite if S is finite.

Definition 2. Let Ms be a pointed CGM. The semantics of CL is defined in-
ductively as follows:

Ms |= p iff s ∈ L(p)
Ms |= ¬ϕ iffMs 6|= ϕ
Ms |= ϕ ∧ ψ iffMs |= ϕ and Ms |= ψ
Ms |= 〈〈C〉〉ϕ iff ∃αC ,∀αC :Mt |= ϕ, where t = out(s, αC ∪ αC)
Ms |= [[C]]ϕ iff ∀αC ,∃αC :Mt |= ϕ, where t = out(s, αC ∪ αC)

Informally, the semantics of the coalition modality 〈〈C〉〉ϕ means that in the
current state of a given CGM there is a choice of actions by the members of
coalition C such that no matter what the opponents from the anti-coalition C
choose to do at the same time, ϕ holds after the execution of the corresponding
action profile.

Definition 3. We call a formula ϕ valid if for all Ms it holds that Ms |= ϕ.

Example 1. An example of a CGM is presented in Figure 1 on the left. The
model is called M and it describes the following protocol. There are two states:
s, where agents receive a prize (propositional variable p), and state t, where
agents do not receive a prize. Each agent has two actions in each state, and they
can switch states by ‘synchronisation’, i.e. by choosing actions with the same
number, either a0b0 or a1b1. Formally, Ms |= p ∧ 〈〈{a, b}〉〉¬p. At the same time,
no agent alone can force the transition to state t, or, in symbols,Ms |= [[a]]p∧[[b]]p.
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The classic notion of indistinguishability between models in modal logic is
bisimulation. In this paper, we will use a CGM-specific version of bisimulation
[1].

Definition 4. Let M = (SM , ActM , actM , outM , LM ) and N = (SN , ActN ,
actN , outN , LN ) be two CGMs. A relation Z ⊆ SM ×SN is called bisimulation
if and only if for all C ⊆ A, s1 ∈ SM and s2 ∈ SN , (s1, s2) ∈ Z implies

– for all p ∈ P , s1 ∈ LM (p) iff s2 ∈ LN (p);
– for all αC ∈ actM (C, s1), there exists βC ∈ actN (C, s2) such that for every
s′2 ∈ OutN (s2, βC), there exists s′1 ∈ OutM (s1, αC) such that (s′1, s′2) ∈ Z.

– The same as above with 1 and 2 swapped.

If there is a bisimulation between M and N linking states s1 and s2, we call the
pointed models bisimilar (Ms1 � Ns2).

The crucial property of bisimilar models, that will be of use later in the
paper, is that bisimilar models satisfy the same set of formulas of coalition logic.

Theorem 1 ([1]). Let M and N be CGMs such that M � N and there is a
bisimulation between s ∈ SM and t ∈ SN . Then for all ϕ ∈ CL, Ms |= ϕ iff
Nt |= ϕ.

3 Coalition Action Model Logic

Before providing formal definitions, we introduce coalitional action models intu-
itively with an example.

3.1 Informal Exposition and Example

Coalitional action models are inspired by action models of DEL [9, 11], and they
are, basically, models, where each state has an assigned formula that is called a
precondition. Preconditions indicate which states of action models are executable
in which states of a given CGM. An action model can be viewed as a policy,
explicitly describing legal joint actions and implicitly imposing restrictions on
existing joint actions in different states. However, the result of implementing
an action model policy is not necessarily a submodel of the initial model: it
can in fact have more states, if the action model describes more possible actions
compatible with the same state in the initial model. We capture this by a product
update using a restricted Cartesian product, very similar to product updates in
AML. In particular, in the update of a CGM with an action model, we take
a product of states of the CGM and those states of the action model that are
satisfied according to preconditions. In the resulting updated model, a transition
labelled with an action profile is preserved, if there is a corresponding transition
in both CGM and the action model. To differentiate CGMs and coalitional action
models, we will use sans-serif font for the elements of the latter.
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s : p t : ¬p

M

a0b0
a1b1

a0b0
a1b1

a0b1
a1b0

a0b1
a1b0

s : >

t : >

u : p

M

a0b1
a0b0

a1b0
a1b1

a−b−

a−b−

Fig. 1. Model M (left) and action model M (right).

(s, s) : p

(t, t) : ¬p

(s, u) : p

(t, s) : ¬p(s, t) : pMM :

a0b0 a0b1

a1b0 a1b1

a1b1

a0b0, a1b1

a0b0, a0b1
a1b0, a1b1

a1b0

a0b1 a0b0

a0b1, a1b0

a0b0
a1b1

a0b0
a1b1

Fig. 2. Updated model MM with added action profiles in bold font.

Example 2. As a continuation of our prize example, consider action model M in
Figure 1. In the figure, a−b− is a shorthand that the corresponding transition is
labelled by all of a0b0, a0b1, a1b0, and a1b1.

Action model M describes a policy that prescribes the following modification
of the protocol expressed by CGMM . In all states, s or t, if the first agent chooses
action a0, then follow the prize protocol without any modifications (expressed
by state t). If the first agent chooses action a1, then agents enter a state, where
each their joint action gets a prize (expressed by state u).

The result of updating CGM M with action model M is updated model MM

(Figure 2) that is based on a product of states of M with those states of M that
satisfy preconditions. For example, precondition of state s is satisfied by both s
and t, and thus we have both (s, s) and (t, s) in the updated model. There is an
arrow labelled with an action profile α between some (s, s) and (t, t) if there are
arrows labelled with α from s to t and from s to t. Finally, p is satisfied by (s, s)
if p ∈ L(s).

Observe that although in the example for both M and M transitions from
each state were defined for each action profile, it is not the case for the corre-
sponding function of MM. The reason for this is that the intersection of transi-
tions from M and M is not guaranteed to include all executable action profiles.
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Indeed, in the example, in Ms action profile a1b1 takes the agents to a ¬p-state,
while the same profile in Ms takes the agents to a p-state. Similarly for action
profiles a1b0 in states t and s, and a0b0 and a1b1 in states s and u.

This can be interpreted as the uncertainty (or a conflict) agents may have
when a new modification contradicts the existing protocol. We deal with such
situations by making the agents remain in the current state in the cases of such
uncertainty. In other words, we follow the rule that says when in doubt, remain
where you are. On the level of updated models this means that for all action
profiles α that are not defined, we put outM

M

((s, s), α) = (s, s). That is why in
MM action profiles a1b0 and a1b1 (in bold font) loop back to states (t, s) and
(s, s) correspondingly. Moreover, action profiles a0b0 and a1b1 loop back to (s, u).
In this paper, we will write labels of added self-loops in bold font.

Of course, our approach to managing these conflicts is quite conservative, and
one can imagine more radical ways of updating a CGM. We leave the exploration
of such alternatives for future work.

All in all, action model M updates agents’ strategic abilities by taking into
account what they actually can achieve in a given CGM M . Thus, in Figure
2 we can indeed see that in state (s, s) action a0 by the first agents leads to
agents executing the same protocol as described by CGM M (states (s, t) and
(t, t) in the updated model). On the other hand, contrary to the situation in
the initial model, now in the updated model agents can reach state (s, u), where
they always receive prizes. Formally, we can write Ms 6|= 〈〈{a, b}〉〉[[{a, b}]]p and
Ms |= [Ms]〈〈{a, b}〉〉[[{a, b}]]p, where construct [Ms] means execution of action
model M with the actual state s.

3.2 Syntax and Semantics of Coalition Action Modal Logic

Definition 5. A coalitional action model M, or an action model, is a tuple
(S,Act, act, out, pre), where S is a finite non-empty set of states, Act is a non-
empty set of actions, act : A× S→ 2Act \ ∅ assigns to each agent and each state
a non-empty set of actions. Definitions related to action profiles are the same
as in the definition of CGM. Function out is a partial function that maps all
action profiles executable in a state to a unique output state. Finally, pre : S→CL
assigns to each state a formula of coalition logic. We denote action model M with
a designated state s by Ms.

Definition 6. The language of coalition action model logic CAML is given
recursively by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ | [π]ϕ
π ::= Ms | (π ∪ π)

where [π]ϕ is read ‘after execution of π, ϕ is true’, and the union operator stands
for a non-deterministic choice. Dual 〈π〉ϕ is defined as ¬[π]¬ϕ.

Definition 7. Let Ms = (S,Act, act, out, L) be a pointed CGM and Ms =
(S,Act, act, out, pre) be a coalitional action model. The semantics of CAML ex-
tends the semantics of CL in Definition 2 with the following:
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Ms |= [Ms]ϕ iffMs |= pre(s) implies MM
(s,s) |= ϕ

Ms |= 〈Ms〉ϕ iffMs |= pre(s) and MM
(s,s) |= ϕ

Ms |= [π ∪ ρ]ϕ iffMs |= [π]ϕ and Ms |= [ρ]ϕ
Ms |= 〈π ∪ ρ〉ϕ iffMs |= 〈π〉ϕ or Ms |= 〈ρ〉ϕ

The updated model MM is a tuple (A,SMM

, Act, act, outM
M

, L), where

SMM

= {(s, s) | s ∈ S, s ∈ S, and Ms |= pre(s)},

outM
M

((s, s), α) =

{
(t, t) (t, t) ∈ SMM

, out(s, α) = t and out(s, α) = t

(s, s), otherwise.

According to the definition of an updated model, we assume that action mod-
els do not grant agents new actions, and, moreover, the valuation of propositional
variables remains the same. Thus, action models can be viewed as policy updates
that deal only with agents’ strategic abilities, and take into account what agents
can actually do in the current CGM. Another point worth mentioning is that in
our definition of action models we do not require the function out to be total.

There are many similarities between AML and CAML. In particular, all of
the following properties are valid for both logics. Their validity in the case of
CAML can be shown by application of the definition of the semantics.

Proposition 1. All of the following are valid.

1. 〈Ms〉ϕ→ [Ms]ϕ
2. [Ms]p↔ (pre(s)→ p)
3. [Ms]¬ϕ↔ (pre(s)→ ¬[Ms]ϕ)
4. [Ms](ϕ ∧ ψ)↔ ([Ms]ϕ ∧ [Ms]ψ)
5. [π ∪ ρ]ϕ↔ [π]ϕ ∧ [ρ]ϕ

The first item states that there is only one way to execute an action model.
This is similar to public announcements [19]. Note, however, that in general,
〈π〉ϕ→ [π]ϕ is not valid, since 〈π〉ϕ is executed non-deterministically. The sec-
ond property shows that updating a model does not affect propositional vari-
ables. Interaction between action models and negation is captured by the third
item. Property number four states distributivity of action model updates over
conjunction. Finally, the fifth item shows how we can get rid of the union.

Even though Proposition 1 shows that AML and CAML have much in com-
mon, the logics are different in a very crucial way. Items two, three, and four of
the proposition, interpreted as AML formulas, in conjunction with an interaction
principle for AML action models and knowledge modality, constitute reduction
axioms of AML. This means, that in the context of AML, each formula with an
action model can be equivalently rewritten into a formula without it, thus show-
ing that AML is as expressive as epistemic logic, and providing a completeness
proof for AML ‘for free’ (see more on this [11, Sections 6,7, and 8]). We show in
the next section that this is not true for CAML.
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4 Expressivity

In this section, we argue that, unlike the case of DEL, CAML is strictly more
expressive than CL, and thus no reduction axioms are possible. Apart from that,
we briefly compare CAML to alternating-time temporal logic (ATL) [5].

Definition 8. Let ϕ and ψ be formulas of a language interpreted on CGMs. We
say that they are equivalent if for all pointed CGMs Ms it holds that Ms |= ϕ
iff Ms |= ψ.

Definition 9. Let L1 and L2 be two languages. We say that L1 is at least as
expressive as L2 (L2 6 L1) if and only if for all ϕ ∈ L2 there is an equivalent
ψ ∈ L1. If L1 is not at least as expressive as L2, we write L2 66 L1. If L2 6 L1

and L1 66 L2, we write L2 < L1 and say that L1 is strictly more expressive than
L2. Finally, if L1 66 L2 and L2 66 L1, we say that L1 and L2 are incomparable.

Theorem 2. CL < CAML.

Proof. That CL 6 CAML follows from the fact that CL ⊂ CAML. To show
that CAML 66 CL , consider models Ms from and Ns from Figure 3. In the
models, a−b− is a shorthand for all of a0b0, a0b1, a1b0, and a1b1. Observe that
the two models are quite similar and the difference is that in Ms the agents
can force ¬p if they choose actions labelled with the same number, e.g. a0b0,
and in Ns the agents can force ¬p is they choose actions labelled with different
numbers, e.g. a0b1. It is easy to check that the two models are bisimilar, and
thus satisfy the same formulas of CL by Theorem 1.

s : p t : ¬p

M

a1b1
a0b0

a0b1
a1b0 a−b−

s : p t : ¬p

N

a0b1
a1b0

a0b0
a1b1 a−b−

s : >
M

a0b0

Fig. 3. Models M (left), N (middle), and action model M (right).

Now consider action model M in Figure 3. The action model has only one
state with the precondition > and one self-loop labelled with a0b0. The results
of updating Ms and Ns with Ms are presented in Figure 4.

It is clear that Ms |= 〈Ms〉〈〈{a, b}〉〉¬p and Ns 6|= 〈Ms〉〈〈{a, b}〉〉¬p. Thus we
have that, first, no formula of CL can distinguish Ms and Ns, and, second,
that formula 〈Ms〉〈〈{a, b}〉〉¬p of CAML distinguishes the models. Hence, CL 6
CAML. ut

From Theorem 2 it follows that there cannot be any reduction axioms for
CAML. There is, however, yet another interesting corollary. In the proof, we



Action Models for Coalition Logic 9

(s, s) : p (t, t) : ¬p

MM

a0b0

a0b1

a1b0

a1b1

a0b0, a0b1

a1b0, a1b1

(s, s) : p (t, t) : ¬p

NM

a0b0, a0b1

a1b0, a1b1

a0b0, a0b1

a1b0, a1b1

Fig. 4. Updated models MM (left) and NM (right) with added action profiles in bold
font.

started with two bisimilar models, and the results of updating them with the
same coalitional action model turned out to be not bisimilar. This is quite dif-
ferent from DEL, where updates with action models preserve bisimulation [11,
Proposition 6.21].

Corollary 1. Coalitional action models do not preserve bisimulation.

Now we turn to the comparison of CAML and ATL [5], with the latter being,
probably, the most well-known logic for reasoning about strategic abilities. Other
notable examples of such logics include ATL∗ [5] and strategy logic (SL) [16].
ATL extends CL with temporal operators Xϕ for ‘ϕ is true in the next step’, Gϕ
for ‘ϕ is alway true’, and ψUϕ for ‘ψ is true until ϕ’. Due to the lack of space
we do not present ATL here, and the the interested reader can find more details
in the cited literature [5, 1, 2].

Theorem 3. CAML and AT L are incomparable.

Proof. We omit the proof for brevity and just give some general intuitions of
the main points. First, to argue that CAML 66 AT L, we can reuse the proof
of Theorem 2 without any modification with only mentioning that for bisimilar
models, Theorem 1 can be extended to AT L [1]. Second, to show that AT L 66
CAML we can consider an AT L formula with Until modality. Then we assume
towards a contradiction that there is a CAML formula of some finite size n that
is equivalent to the AT L formula with Until. After that, we can construct two
models of size greater than n so the the AT L formula can spot a difference with
the help of Until, and the CAML formula does not have enough ‘depth’ to spot
the difference. ut

5 Model Checking

Now we show that the model checking problem for CAML is PSPACE -complete.
It is known that model checking coalition logic can be done in polynomial time,
and, thus, in the case of CAML, we have to pay for increased expressivity with
higher complexity. This is similar to the situation with DEL, where model check-
ing epistemic logic can be done in polynomial time [14], and the complexity of
model checking action model logic is PSPACE -complete [8].
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Theorem 4. The model checking problem for CAML is PSPACE-complete.

Proof. To show that the model checking problem for CAML is in PSPACE,
we present Algorithm 1. Boolean cases and the case of coalition modalities take
polynomial time and we omit them for brevity. For an overview of model checking
of strategic logics, including CL, see [10].

Algorithm 1 An algorithm for model checking CAML
1: procedure MC(M, s, ϕ)
2: case ϕ = [Ms]ψ
3: if MC(M, s, pre(s)) then
4: return MC(MM, (s, s), ψ)
5: else
6: return true
7: case ϕ = [π ∪ ρ]ψ
8: return MC(M, s, [π]ψ) and MC(M, s, [ρ]ψ)

The algorithm follows the semantics and its correctness can be shown via
induction on ϕ. Now we argue that the algorithm takes at most polynomial
space. The interesting case here is ϕ = [Ms]ψ. Since preconditions are formulas
of coalition logic, MC(M, s, pre(s)) is computed in polynomial time, and hence
space. The size of updated model MM is bounded by O(|M | × |M|) 6 O(|M | ×
|ϕ|). Finally, since there at most |ϕ| symbols in ϕ, the total space required by
MC(M, s, ϕ) is bounded by O(|M | × |ϕ|2).

To show hardness, we take the PSPACE -hardness proof of the model checking
problem for AML [8] as a starting point, and adapt the technique to CGMs and
coalitional action models. The main difficulty we face here is that we need to
fine-tune models and action models used in the proof in order to ensure that out
functions behave as expected.

We use the classic reduction from the satisfiability of quantified Boolean
formula (QBF) that is known to be PSPACE -complete. Also, without loss of
generality, we assume that our QBFs have 2k variables with alternating quanti-
fiers. See more on satisfiability of such QBFs in [7, p. 83].

For a given QBF Ψ := ∀x1∃x2 . . . ∀x2k−1∃x2kψ(x1, . . . , x2k) we construct in
polynomial time a CGM Ms over A = {a}, action models AddChainisi0 for all xi,
action model Copyt, and a formula of CAML ψ′ such that

Ψ is satisfiable iff
Ms |= [AddChain1s10 ∪ Copyt]〈AddChain2s20 ∪ Copyt〉 . . .

[AddChain(2k − 1)s2k−1
0
∪ Copyt]〈AddChain2ks2k0 ∪ Copyt〉ψ′.

Model M is a tuple (S,Act, act, out, L), where S = {si | 0 6 i 6 2k + 1},
Act = {ai | 0 6 i 6 2k}, act(a, si) = Act for 0 6 i 6 2k, and act(a, s2k+1) =
{a0}, out(si, α) = si+1 for 0 6 i 6 2k, and out(s2k+1, α) = s2k+1, and {xi} =
L(si) for 0 6 i 6 2k + 1. The model is a chain of states of length 2k + 1 such
that each next step is reachable via actions a0, ...,a2k of agent a, and there is a
self-loop labelled with a0 in the last state s2k+1. Each state satisfies exactly one
propositional variable xi.
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Coalitional action model AddChaini is a tuple (S,Act, act, out, L), where S =
{sij | 0 6 j 6 i} ∪ {si∗}, Act = {ai | 0 6 i 6 2k}, act(a, sij) = {al | 1 6 l 6 i}
for j 6= i and j 6= 0, act(a, si0) = Act, act(a, si∗) = {al | 0 6 l 6 2k and l 6= i},
out(sij , al) = sij+1 for 0 6 j < i, 1 6 l 6 i and l 6= 0, out(si0, al) = si∗ for
l = 0 and l > i, out(sii, ai) = sii, out(si∗, aj) = si∗ for 0 6 j 6 2k and j 6= i,
pre(sij) = xj for 0 6 j 6 i, and pre(si∗) = ¬x0. Action model AddChaini is a chain
of length i where each next state is reachable via all actions ai excluding a0, the
final state in the chain has a self loop labelled with ai, and a special state si∗ is
reachable from the first state of the chain via a0 and all aj such that j > i. The
intuition behind the action models is that AddChaini’s add chains of length i to
Ms meaning that variable xi has been set to 1. Moreover, all other chains that
were already in a CGM are not affected.

Coalitional action model Copy is a tuple (S,Act, act, out, L), where S = {t},
Act = {ai | 0 6 i 6 2k}, act(a, t) = Act, out(t, α) = t, and pre(t) = >. Action
model Copy just copies a given model so that no new chain appears meaning
that the current xi has been set to 0.

Finally, we translate ψ(x1, . . . , x2k) by substituting every xi with (〈〈a〉〉)i[[a]]xi,
where (〈〈a〉〉)i is a stack of size i of 〈〈a〉〉’s. In the resulting translated formula,
subformula (〈〈a〉〉)i[[a]]xi holds if in a model there is a chain of length i with a
loop at the end. This means that variable xi has been set to 1.

As an example, consider a QBF ∀x1∃x2(x1 → x2). We translate the formula
into a CAML formula

[AddChain1s10 ∪ Copyt]〈AddChain2s20 ∪ Copyt〉(〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2).

The corresponding modelM and action models AddChain1, AddChain2, and Copy
are presented in Figure 5.

According to the semantics,

Ms |= [AddChain1s10 ∪ Copyt]〈AddChain2s20 ∪ Copyt〉(〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2)

if and only if

Ms |= [AddChain1s10 ]〈AddChain2s20 ∪ Copyt〉(〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2)

and

Ms |= [Copyt]〈AddChain2s20 ∪ Copyt〉(〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2).

In other words, 〈AddChain2s20 ∪ Copyt〉(〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2) should hold
in both MAddChain1

(s0,s10)
and MCopy

(s0,t)
. Updated model MAddChain1

(s0,s10)
is depicted in Figure

6, and model MCopy
(s0,t)

will just copy M , so we do not provide the figure.

Now, for each of MAddChain1
(s0,s10)

and MCopy
(s0,t)

there must be a subsequent update
with either AddChain2 or Copy such that 〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2 will hold in
the resulting model.

The result of updatingMCopy with AddChain2 is shown in Figure 6. Note that
MCopy,AddChain2

(s0,t,s20)
|= 〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2 as the antecedent is not satisfied.
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s0 : x0

s1 : x1

s2 : x2

s3 : x3

M

a0, a1, a2

a0, a1, a2

a0, a1, a2

a0

s10 : x0

s11 : x1

s1∗ : ¬x0

AddChain1

a1

a0, a2

a1

a0, a2

t : >

Copy

a0, a1, a2

s20 : x0

s21 : x1

s2∗ : ¬x0

s22 : x2

AddChain2

a1, a2

a0

a1, a2

a2

a0a1

Fig. 5. Model M , and action models AddChain1, AddChain2, and Copy.

(s0, s
1
0) : x0

(s1, s
1
∗) : x1

(s2, s
1
∗) : x2

(s3, s
1
∗) : x3

(s1, s
1
1) : x1

MAddChain1

a0, a2

a0, a2

a0, a2

a1

a0

a0,a1,a2

(s0, t, s
2
0) : x0

(s1, t, s
2
∗) : x1

(s2, t, s
2
∗) : x2

(s3, t, s
2
∗) : x3

(s1, t, s
2
1) : x1

(s2, t, s
2
2) : x2

MCopy,AddChain2

a0

a0, a1

a0, a1

a1, a2

a1, a2

a0

a0,a1,a2

Fig. 6. Updated models MAddChain1 and MCopy,AddChain2 with added action profiles in
bold font.

Also observe that MCopy,Copy
(s0,t,t)

would satisfy the formula for the same reason. All
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in all, this corresponds to setting x1 to 0 in the original QBF, and thus the QBF
will be true irregardless of the value of x2.

(s0, s
1
0, s

2
0) : x0

(s1, s
1
∗, s

2
∗) : x1

(s2, s
1
∗, s

2
∗) : x2

(s3, s
1
∗, s

2
∗) : x3

(s1, s
1
∗, s

2
1) : x1

(s2, s
1
∗, s

2
2) : x2

(s1, s
1
1, s

2
1) : x1

MAddChain1,AddChain2

a0

a0

a0

a0

a0,a1,a2

a2

a2

a0,a2

a1

Fig. 7. Updated model MAddChain1,AddChain2 with added action profiles in bold font.

Consider updated model MAddChain1
(s0,s10)

. It has only chains of lengths 1 and 3,
and thus we have thatMAddChain1

(s0,s10)
|= 〈〈a〉〉[[a]]x1 and at the same timeMAddChain1

(s0,s10)
6|=

〈〈a〉〉〈〈a〉〉[[a]]x2. So,MAddChain1
(s0,s10)

does not satisfy formula 〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2.
Hence, updating it with Copy would also result in a model, where the formula
is not satisfied. This corresponds to choosing value 1 for x1 in our QBF, and
setting x2 to 0 will not make the QBF true. However, choosing 1 for x2 satisfies
the formula. In terms of updated models this corresponds to updatingMAddChain1

(s0,s10)

with AddChain2, and the result of such an update is depicted in Figure 7. Note
that in Figure 7 we take the connected component that includes state (s0, s10, s20),
and we disregard state (s1, s

1
1, s

2
∗) that will not be connected to the chosen com-

ponent. It is clear that MAddChain1,AddChain2
(s0,s10,s

2
0)

, which corresponds to setting both
x1 and x2 to 1, satisfies 〈〈a〉〉[[a]]x1 → 〈〈a〉〉〈〈a〉〉[[a]]x2.

Our construction mimics QBFs in the following way. For a universal quantifer
∀xi we use [AddChainisi0∪Copyt] that corresponds to producing an updated model
with a chain of length i, setting xi to 1, and an updated model without such a
chain, setting xi to 0. In the case of ∃xi, the choice between AddChainisi0 and
Copyt is existential, which is expressed by 〈AddChainisi0 ∪ Copyt〉. As a result of
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such a choice, we will have an updated model with a chain of length i, or an
updated model without such a chain. ut

Remark 1. Our hardness reduction relied heavily on non-deterministic choice,
i.e. constructs [π ∪ ρ] and 〈π ∪ ρ〉. As we have already mentioned in Proposition
1, item five, we can equivalently rewrite formulas with unions to formulas without
it. This rewriting, however, can result in a formula of exponential size. We leave
the problem of determining hardness of model checking CAML without union
open, and conjecture that it is still PSPACE -hard. On a similar note, a more
complicated construction than the one used in [8] was employed to show that
DEL without union is PSPACE -hard [13, Theorem 4].

6 Discussion

We presented coalition action model logic (CAML) for reasoning about how
agents’ abilities change as a result of updating a CGM with a coalitional action
model. Even though we took inspiration from DEL, CAML turned out quite
different. In particular, CAML is strictly more expressive that the base CL, and
thus no reduction axioms possible. We also claimed that CAML is incomparable
to ATL, and conjecture that the same holds for other logics for reasoning about
strategic abilities, namely ATL∗ and SL. Finally, we investigated the complexity
of the model checking problem for CAML, and showed that it is PSPACE -
complete.

Since this is the first proposal of DEL-like action models for CGMs, there is
a plethora of open questions. First, the non-existence of reduction axioms leaves
open the problem of providing a sound and complete axiomatisation of CAML.
Moreover, it is also worthwhile to investigate coalitional action models with
postconditions, i.e. action models that allow changing valuations of propositional
variables. While we expect that postconditions will not affect the complexity of
model-checking, expressivity results may turn out to be more surprising. Another
avenue of further research is having a more expressive base language than CL.
In particular, we plan to use action models with ATL and ATL∗. Apart from
that, we had to make a design decision that whenever the result of executing
an action profile is undefined (or, there is a conflict between the existing model
and a proposed modification), then a given system remains in the same state.
However, there may be other intuitively natural ways to handle situations like
that. Finally, our action models are quite conservative in the sense that they
neither grant agents new actions nor revoke any actions. It would be exciting to
come up with action models that affect agents’ sets of available actions.

Acknowledgments We would like to thank anonymous reviewers of AiML 2022
and DaLí 2022 for their careful reading of the paper and encouraging comments.
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Abstract. Dynamic quantum logic (DQL) is studied to represent the
proposition of dynamism in quantum information theory as traditional
quantum logic cannot deal with it. Although DQL includes many impor-
tant notions for quantum physics and quantum information theory, there
are still missing elements. Some concepts of measuring a specific physical
quantity cannot be represented in the exiting DQL. In this study, we add
a new concept of measurement to DQL, and discuss the property of this
new logic.

1 Introduction

Quantum logic (QL) has been studied to handle unique propositions that appear
in quantum physics. Moreover, numerous types of logics and structures have been
proposed to represent and analyze such propositions [11] [12] [16] [23]. In partic-
ular, logic based on orthomodular lattices, namely, orthomodular logic (OML),
has been studied since 1936, proposed by Birkhoff and Von Neumann [10]. An
orthomodular lattice is related to the closed subspaces of a Hilbert space, which
is a state space of a particle in quantum physics. Instead of these lattices, the
Kripke model (possible world model) of OML can be used, which is called the
orthomodular-model (OM-model) [11] [20] [21]. Intuitively, each possible world
of an OM-model expresses an one-dimensional subspace of a Hilbert space, cor-
responding to a quantum state. In quantum mechanics, due to the uncertainty
principle, exact values cannot be simultaneously obtained for a specific set of
physical quantities (for example, momentum and position along an axis). This
statistical property is the nature of the states of the object and exists indepen-
dently of an experimenter’s knowledge. OML handles the most basic part of this
special nature of states. For more details on QL and quantum physics, see [11]
[12].

In OML, static propositions such as “In this state, A is true” are treated.
Dynamic propositions such as “After unitary evolution U , A is true at a state”
cannot be treated in OML. To deal with dynamic propositions and modality
in quantum physics, [2]-[6] have introduced dynamic quantum logic (DQL). In
DQL, some dynamic concepts are defined as modal symbols. In particular, two
dynamism, unitary transformations (unitary evolutions) and projections onto
closed subspaces, have been mainly analyzed. These two dynamisms play a cen-
tral role in the dynamic notion of quantum mechanics. Unitary transformations
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are the most basic state changes in quantum mechanics. Intuitively, this change
corresponds to the change due to the equation of motion in classical mechanics.
On a Hilbert space, these changes are expressed by unitary operators. Changes
due to projection are unique to quantum mechanics, and appear when a phys-
ical quantity of the state is observed. This concept will be explained later. As
the quantum theory progresses, various types of dynamism appear. They are
revealed by the analysis of various kinds of operators in a Hilbert space.

Although some modalities in quantum physics have been studied in mathe-
matical logic, logical analysis of dynamic concepts in quantum mechanics is still
underway. In particular, there is still room for development in analysis in the
direction using abstract models. In general, QL has been developed using two
primary methods. The first method is research using models that can express al-
most all properties of Hilbert spaces [12] [14]. In this context, the Hilbert space is
often used as a model. The second method is research using a simple model that
includes only specific parts of a Hilbert space [10] [24]. Studies using orthomod-
ular lattices formed by observational propositions of a Hilbert space belong to
this category. Each of these two methods has its advantages and disadvantages.
The former method is suitable for detailed and diverse analysis of quantum me-
chanics because it can express almost all propositions for the states or values
of physical quantities in quantum mechanics. However, it has the disadvantage
that logical analysis is difficult because logical symbols and models become quite
complex. Although detailed analysis is impossible in the latter method, specific
properties can be treated in detail. Further, because simple logical symbols and
models are used, it is easy to perform logical analysis and comparison with other
logics.

The former method is extremely common when considering propositions
about complex notions in quantum mechanics. The second method with complex
notions of quantum mechanics has not been studied enough because it cannot
handle complex concepts without constructing the model and logic well. To de-
velop an abstract method, it is desirable to develop it without complicating the
concepts used as much as possible. For example, when using a binary relation
model, it is desirable to only increase the types of relations or formulas, and it
is not so preferable to add other complicated mathematical structures. In this
study, we add important concepts in quantum mechanics to abstract quantum
logic while keeping this constraint.

In quantum physics, the concept of observing the properties of a particle has
been extensively studied. Various types of observations are defined and analyzed
depending on the observation method and accuracy. Mathematically, positive
operator valued measurement (POVM) is widely studied as a general measure-
ment [19]. POVM can be divided into several types depending on what kind of
operator is used. Among them, projection valued measurement (PVM) is recog-
nized as a basic measurement. In this measurement method, the propositions of
a physical quantity are associated with each closed subspace in a Hilbert space
or projection operator corresponding to it. The result of the measurement is
determined by the probability associated with each projection. After the mea-
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surement, the state is projected onto the closed subspace corresponding to the
obtained proposition.

In general, physical quantity is represented by an orthonormal basis of a
Hilbert space. Each physical quantity corresponds to each orthonormal basis,
and each value corresponds to each base. Therefore, PVM of strict value (not in
range) of a physical quantity is represented by projection onto an orthonormal
basis of a Hilbert space. For example, after the value of a physical quantity is
observed to be 3, the state is immediately projected onto the base which 3 is
assigned.

In mathematical logic, these concepts of measurement have been studied ab-
stractly in some contexts. For example, in [3] and [4], the nature of the observer’s
knowledge when observing physical quantities is analyzed. These contexts are
based on DQL and involve DQL’s nature to handle the concept of projection
concisely.

Although the notion of projection can be used in DQL, the proposition of
projective measurement can only be dealt with in a limited way. Intuitively, the
concept of projection used in DQL can only handle the so-called YES-NO judg-
ment of whether or not proposition A holds. This measurement correspond to
PVM composed of projections onto the closed subspace that A is true and the
orthogonal closed subspace of it. The formula of DQL [A?]B can be translated
as “After testing whether or not proposition A holds, if A is true, then B is
also true.” In this setting, propositions involving the measurement of specific
physical quantity, such as “After observing one value of a physical quantity M ,
whatever the value, A is true” cannot be handled because in the present studies
of DQL, there is no modal symbol for projection onto specific orthonormal basis.
Moreover, the current DQL model does not include the concept of an orthonor-
mal basis. Therefore, DQL cannot express some types of PVM. To overcome
this problem, in this study, we add the notion of an orthonormal basis to the
model and add new symbols for measurement to the language, and analyze its
nature. The formula correspondences with the new modal symbols for important
conditions are also given. Similar to the original DQL, these formulas express
important elements of a Hilbert space.

We add a new class of propositional variables to the language, and bases are
expressed by these variables. Moreover, a new modal symbol is defined as pro-
jections onto these bases. The properties of orthogonal bases are represented by
axioms and rules that include this symbol. As one of the features of this method,
we do not use symbols that specifically specify the state, such as nominal, since
we want to keep the concept as simple as possible.

As a model, we adopt the model of DQL and construct a new model by
adding abstract concepts of orthonormal basis to it. Intuitively, a model for
DQL is constructed by adding some conditions of Hilbert spaces to a basic model
for dynamic logic [13] [15]. This model does not introduce all the properties of
Hilbert space but expresses only some of the properties that are suitable for
binary relations. [2]. Some cumbersome conditions for Hilbert spaces are not
added to the model, as these conditions do not appear in the main argument.
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Although most conditions are the same as in [2] but modified slightly to be
suitable for handling in this study. This change does not affect the outline of the
discussion.

In section 2, we review the definition and concept of DQL. In section 3, we
discuss the main topics. We discuss in detail why normal DQL is incompatible
with some concepts of measurement, and discuss how to solve this problem by
adding new modal symbols for measurement and constructing a new model. In
section 4, some remarks and future works are discussed.

2 Basics

In this section, we review the definition and concept of DQL using mainly the
basic notations in [2]. We omit some details here; see [2]-[6] for full details about
DQL. We use almost the same language as dynamic logic but without Kleene
star. We add the symbol † for the Hermitian conjugate of a transformation.
We also add the modal symbol � to denote non-orthogonality. We use p, q, . . .
to denote propositional variables and A,B,C, . . . to denote composite formulas.
We use U, V, . . . to denote variables for unitary evolution and π to denote com-
posite actions. We use U to denote the set of all variables for unitary evolution.
Formulas and actions are defined below.

A ::= p | ⊥ | ¬A | A∧B | �A | [π]A
π ::= U | π† | π ∪ π | π;π | A?

We use the following abbreviations: A∨B = ¬(¬A∧¬B), A → B = ¬A∨B、
A ↔ B = (A → B)∧(B → A), ♢A = ¬�¬A、⟨π⟩A = ¬[π]¬A. We write A[p/B]
to mean that all appearances of p in A are replaced by B.

A dynamic frame is defined as a triple ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩. X is a

nonempty set. { Y ?−−→}Y⊆X is a set of binary relations Y ?(Y ⊆ X) on X. { U−→}U∈U
is a set of binary relations U ∈ U on X. That is, for every Y ⊆ X and U ∈ U ,
we define a binary relation on X. Moreover, we use the same symbols of unitary
evolutions in formulas and binary relations. For any relation R and for every
x, y ∈ X, we write x(R)y if (x, y) ∈ R. We define the composite relation R;R′

by R;R′ = {x, y ∈ X| there exists z ∈ X such that x(R)z and z(R′)y}. We also
We introduce a binary relation ̸⊥ on X as follows:

x ̸⊥ y ⇔ there exists Y ⊆ X such that x(Y ?)y or y(Y ?)x.

We write x⊥y if not x ̸⊥ y. We write x⊥Y if for all y ∈ Y , x⊥y where x ∈ X
and Y ⊆ X. Given Y ⊆ X, we define the set Y ⊥ = {x ∈ X|x⊥Y }. We say that
Y is testable if Y ⊥⊥ = Y . We write Y⊥Z if for all y ∈ Y and z ∈ Z, y⊥z.

We define a dynamic quantum frame ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩ by adding the
following conditions to a dynamic frame. In these conditions, new binary rela-
tions in the form of R† appear. However, it can be seen that these new relations

are uniquely determined by { Y ?−−→}Y⊆X and { U−→}U∈U from the conditions. This
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is the same as the conjugate P † of the operator P being uniquely determined in
a Hilbert space. Therefore, we do not express these relations in the expression

of a dynamic quantum frame ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩.

1. There is no x, y ∈ X such that x(∅?)y. For all x ∈ X, x(X?)x.
2. For all x, y, z ∈ X, if x(Y ?)y and x(Y ?)z, then y = z. (Partial functionality

of P?)
3. If x ∈ Y , then x(Y ?)x. (Adequacy)
4. For all x, y ∈ X, if Y ⊆ X is testable and x(Y ?)y, then y ∈ Y . (Repeata-

bility)
5. For all Y,Z ⊆ X, if Y and Z are testable and Y ?;Z? = Z?;Y ?, then

Y ?;Z? = (Y ∩ Z)?. (Compatibility)
6. Let (R) be (Y ?), (U), or (U†). If x(R)y and y ̸⊥ z, then there exists w ∈ X

such that z(R†)w and w ̸⊥ x. (Adjointness)
7. For all x ∈ X and U , ∃!y ∈ X such that x(U)y. (Functionality for U)
8. For all x ∈ X and U†, ∃!y ∈ X such that x(U†)y. (Functionality for U†)
9. For all x, y ∈ X, x(U)y iff y(U†)x. (Bijectivity)
10. For all x, y ∈ X and Y ⊆ X, x(Y ?)y iff x(Y ?†)y.
11. For all x, y ∈ X, there exists z ∈ X such that x ̸⊥ z and z ̸⊥ y. (Universal

accessibility)

This definition is almost the same as the definition in [2] but modified slightly
to be suitable for handling in this study, and important properties derived from
existing conditions are explicitly included. These conditions represent some na-
ture of a Hilbert space [2].

From the definition of ̸⊥ and condition 1, ̸⊥ is confirmed as a symmetric and
reflective relation.

We define a dynamic quantum model (DQM) ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , V ⟩,
where ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩ is a dynamic quantum frame and V is a function
mapping each propositional variable p to a subset of X. We define the sets ∥A∥
on a DQM by induction on the composition of A as follows. We write x(A?)y if
∥A∥ = Y ⊆ X and x(Y ?)y.

∥p∥ = V (p)
∥⊥∥ = ∅
∥A ∧B∥ = ∥A∥ ∩ ∥B∥
∥¬A∥ = ∥A∥c
∥�A∥ = {x ∈ X| for all y ∈ X, if x ̸⊥ y, then y ∈ ∥A∥}
∥[A?]B∥ = {x ∈ X| for all y ∈ X, if x(A?)y, then y ∈ ∥B∥}
∥[U ]A∥ = {x ∈ X| for all y ∈ X, if x(U)y, then y ∈ ∥A∥}
∥[π1;π2]A∥ = ∥[π1][π2]A∥
∥[π1 ∪ π2]A∥ = ∥[π1]A∥ ∩ ∥[π2]A∥
∥[B?†]A∥ = ∥[B?]A∥
∥[U†]A∥ = {x ∈ X| for all y ∈ X, if x(U†)y, then y ∈ ∥A∥}
∥[(π1;π2)

†]A∥ = ∥[π†
2;π

†
1]A∥

∥[(π1 ∪ π2)
†]A∥ = ∥[π†

1 ∪ π†
2]A∥
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∥[π††]∥A = ∥[π]A∥

We say that formula A is true at x ∈ X if x ∈ ∥A∥. We say that A is false at

x ∈ X if x /∈ ∥A∥. We say that A is valid in a DQM ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , V ⟩
if for all x ∈ X, A is true at x. We say A is a testable formula if ∥A∥ is testable
in all DQMs. We say that a DQM is T-complete if for all testable sets Y ⊆ X
there exists A such that ∥A∥ = Y . In the next section, we need this concept to
be able to represent all testable sets by formulas.

Axioms and rules for dynamic quantum logic is introduced as follows [2]-[6],
based on the traditional modal logic [17] [18]. In this study, we call this system
PDQL (propositional dynamic quantum logic).

All the axioms and rules of classical dynamic logic
(Necessitation Rule): If A is provable, then infer [π]A
(Kripke Axiom): [π](A → B) → ([π]A → [π]B)
(Test Generalization): If A → [C?]B is provable for all C, then infer A → �B
(Testability Axiom): �A → [B?]A
(Partial Functionality): ¬[A?]B → [A?]¬B
(Adequacy): A ∧B → ⟨A?⟩B
(Repeatability): [A?]A for all testable formulas A
(Universal Accessibility): ⟨π⟩��A → [π′]A
(Unitary Functionality): ¬[U ]A ↔ [U ]¬A
(Unitary Bijectivity 1): A ↔ [U ;U†]A
(Unitary Bijectivity 2): A ↔ [U†;U ]A
(Adjointness): A → [π]�⟨π†⟩♢A
(Substitution Rule): If A is provable, then infer A[p/B]
(Compatibility Rule): For all testable formulas A,B and every propositional

variable p which does not appears in A,B, if ⟨A?;B?⟩p → ⟨B?;A?⟩p is
provable, then infer ⟨A?;B?⟩p → ⟨(A ∧B)?⟩p

From the universal accessibility of a model, ��A means that A is true at all
x ∈ X. We require the following lemma for the next section.

Lemma 1. In any dynamic quantum frame, if x ̸⊥ y, y ∈ Y and Y is testable,
then there exists z ∈ Y such that x(Y ?)z.

Proof. From adequacy, y(Y ?)y. From the adjointness of (Y ?), there exists z ∈ X
such that x(Y ?)z and z ̸⊥ y. From the testability of Y and repeatability, z ∈ Y .

⊓⊔

Furthermore, we use the following abbreviations of formulas for convenience:

∼ A = �¬A
T (A) = ��(∼∼ A → A)

∼ represents quantum negation. In any DQM, ∥A∥ is testable if and only if
∥A∥ = ∥ ∼∼ A∥. Because A →∼∼ A is always true, if ∼∼ A → A is true at all
x ∈ X, then ∥A∥ is testable. Therefore, T (A) means that A is testable.
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3 Modality for Measurement

In this section, we introduce a new modal operator that represents PVM in
special cases. We deal with a PVM consisting of all the projections onto the
eigenstates associated with a physical quantity M . In this situation, when a
physical quantity M is measured, the state is projected onto one element of
an orthonormal basis that corresponds to M in a Hilbert space. Although this
movement of a state is a fundamental concept in quantum physics, a proposition
such as “After a measurement of M , A is true” cannot be represented by the
formulas given in section 2. A projection to a closed subspace of a Hilbert space
is represented by the modal symbol [A?]. Therefore, intuitively, “After a mea-
surement of M , A is true” may be represented by [B1?∪B2?∪B3?∪ . . .]A where
Bi corresponds to an orthonormal basis of M in a Hilbert space. Intuitively,
this expression has three problems. Firstly, in the DQM, we did not introduce
the notion of an orthonormal basis. Secondly, we cannot show that Bi corre-
sponds to an orthonormal basis of M because the propositional variables could
be any subset of a Hilbert space. Thirdly, if an orthonormal basis has infinite
elements, the set {B1, B2, B3, . . .} will be an infinite set. However, the infinite
chain B1 ∪B2 ∪ . . . is not allowed.

As a solution to the first problem, we introduce a set for an orthonormal
basis in a dynamic quantum frame. P(X) denotes the power set of X. Given a

dynamic quantum frame ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩, we say that a setOb ⊆ P(X)

is an orthonormal basis of ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩ if Ob satisfies the following
conditions. The symbol ⊔ is the quantum disjunction Y ⊔ Z = (Y ⊥ ∩ Z⊥)⊥.

1. If S ∈ Ob, then S is testable.
2. If S ∈ Ob, and for all testable subsets Y ⊆ X, if S ∩ Y ̸= ∅, then S ⊆ Y .
3. If S ∈ Ob, T ∈ Ob and S ̸= T , then for all x ∈ S and y ∈ T , x⊥y.
4.

⊔
Y ∈Ob

Y = X.

Condition 1 represents the testability of elements of bases because the ele-
ments of an orthonormal basis are one dimensional closed subspaces of a Hilbert
space. Condition 2 represents the atomicity of a one-dimensional closed subspace
of a Hilbert space. Thereby, one-dimensional closed subspaces are minimal closed
subspaces of a Hilbert space except for ∅. Condition 3 means that all elements
of an orthonormal basis are mutually orthogonal. Condition 4 represents the
completeness of an orthonormal basis because quantum disjunction represents
the closed subspace spanned by the elements in a Hilbert space.

For example, consider the following dynamic quantum frame ⟨X, { Y ?−−→}Y⊆X , { U−→
}U∈U ⟩, which is an abstract representation of a part of two-dimensional Hilbert
space H2.

X = {x, y, z, w}.
{∅}?−−−→= ∅.
{x}?−−−→= {(x, x), (z, x), (w, x)}.
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{y}?−−−→= {(y, y), (z, y), (w, y)}.
{z}?−−−→= {(z, z), (x, z), (y, z)}.
{w}?−−−→= {(w,w), (x,w), (y, w)}.
For all other sets Y ⊆ X,

Y ?−−→= {(x, x), (y, y), (z, z), (w,w)}.
U1−−→= {(x, z), (z, y), (y, w), (w, x)}.
U2−−→= {(x, y), (z, w), (y, x), (w, z)}.
For all other V ∈ U , V−→= {(x, x), (y, y), (z, z), (w,w)}.

Intuitively, {x, y, z, w} corresponds to {|0⟩, |1⟩, (|0⟩+ |1⟩)/
√
2, (|0⟩−|1⟩)/

√
2}

in H2, U1 corresponds to π/4 rotation, and U2 corresponds to π/2 rotation. The
following can be confirmed.

x⊥y and z⊥w.
{{x}, {y}} and {{z}, {w}} are orthonormal bases.

To solve the second problem, we must introduce a new subset of propositional
variables to represent an orthonormal basis. We define a set of propositional
variables for orthonormal basis Bp = {s, t, . . .} ⊂ {p, q, . . .}, where both Bp and
{p, q, . . .} −Bp are infinite sets. We introduce a new modal operator � to solve
the third problem. We regard this new modal operator as quantification of [s?].
Therefore, intuitively, �A corresponds to [s? ∪ t? ∪ . . .]A. This property is the
same as the property of �, namely that � is a quantification of [p?].

We say that ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , Ob⟩ is an extended dynamic quantum
frame if it satisfies the following conditions.

1. ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩ is a dynamic quantum frame.

2. Ob is an orthonormal basis of ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩.

We say that ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , Ob, V ⟩ is an extended dynamic quan-
tum model (EDQM) if it satisfies the following conditions.

1. ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , Ob⟩ is an extended dynamic quantum frame.
2. V is a function that assigns each propositional variable p (including s ∈ Bp)

to a subset of X
3. For all s ∈ Bp, V (s) ∈ Ob.
4. For every Y ∈ Ob, there exists s ∈ Bp such that V (s) = Y .

We define ∥�A∥ in an EDQM as follows.

∥�A∥ = {x ∈ X| for all y ∈ X and for all s ∈ Bp, if x(s?)y, then y ∈ ∥A∥}

The truth and validity of the formulas for an EDQM are defined in the same
way as for a DQM. From the conditions for an EDQM, every element of Ob has
some s ∈ Bp, and each V (s) can only be Y ∈ Ob. Therefore, if we regard Ob as



Quantum Logic for Observation of Physical Quantities 9

the orthonormal basis for physical quantity M , then we can read �A as “After
a measurement of M , (whatever the value), A is true.”

We add the following rules and axioms to PDQL and create a new logic
that we refer to as EPDQL (extended propositional dynamic quantum logic).
We have to restrict the substitution rule for validity because V (s)(s ∈ Bp) can
only be Y ∈ Ob.

(Test Generalization for Bp): If A → [s?]B is provable for all s, then infer
A → �B

(Testability Axiom for Bp): �A → [s?]A
(Testability of Basis): T (s)
(Atomicity of Basis): s ∧A ∧ T (A) → ��(s → A)
(Orthogonality of Bases): s → t∨ ∼ t
(Completeness of Orthonormal Basis): ¬�⊥
(Substitution Rule for EPDQL): If A is provable and p /∈ Bp, then infer

A[p/B]

Note that because Bp is a part of {p, q, . . .}, axioms in PDQL that include
[p?] also apply to [s?]. We say that a rule is valid in an EDQM if it satisfies the
following. If the premise of a rule is valid in an EDQM, then the conclusion of
the rule is also valid in the EDQM.

Theorem 1. All axioms and rules of EPDQL are valid in all EDQMs.

Proof. The proofs of the validity of the generalization rule and testability axiom
are the same as usual.

T (s) is always true because of V (s) ∈ Ob.
Suppose s ∧ A ∧ T (A) is true at x ∈ X. From V (s) ∈ Ob and the second

condition of an orthonormal basis, s → A is true at all y ∈ X. Therefore,
��(s → A) is true at x.

Suppose s is true at x ∈ X. As V (s) ∈ Ob and V (t) ∈ Ob, if t is not true at
x, x⊥V (t). Therefore, �¬t is true at x.

From
⊔

Y ∈Ob

Y = X,
∩

Y ∈Ob

Y ⊥ = (
⊔

Y ∈Ob

Y )⊥ = ∅. Therefore, each x ∈ X is

related by ̸⊥ to some y ∈ Y ∈ Ob. From condition 4 of an EDQM and from
Lemma 1, there exists z ∈ X such that x(s?)z. Therefore, �⊥ cannot be true at
any x ∈ X.

Suppose s ∧ A is true at x ∈ X. For every t, [t?]A is true at x because
if V (s) = V (t), [t?]A = [s?]A and s ∧ A → [s?]A is valid in any EDQM. If
V (s) ̸= V (t), because x⊥V (t), [t?]B is true for every B. Therefore, �A is true
at x. ⊓⊔

We can prove important formulas in EPDQL. For example, s ∧ A → �A
(Eigenstate) and �A → � � A (Repeatability of measurement) can be proved
as follows (we give only an outline of the proof):

The proof for s ∧A → �A.
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1. From the partial functionality and the adequacy, t ∧ A → [t?]A (t does not
appear in A).

2. From �¬t → [t?]⊥ ([7]) and [t?]⊥ → [t?]A, �¬t ∧A → [t?]A.
3. From 1 and 2, (t ∨�¬t) ∧A → [t?]A.
4. From the orthogonality of bases and 3, s ∧A → [t?]A (s does not appear in

A).
5. From the test generalization for Bp and 4, s ∧A → �A.

The proof for �A → ��A.

1. s ∧A → �A (s does not appear in A).
2. From the necessitation rule, the Kripke axiom and 1, [s?]s∧ [s?]A → [s?]�A.
3. From repeatability, the testability of s and 2, [s?]A → [s?]�A.
4. �A → [s?]A.
5. From 3 and 4, �A → [s?]�A.
6. From the test generalization for Bp and 5, �A → ��A.

Conversely, we can make an orthonormal basis of a dynamic quantum frame

⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩ from the DQM ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , V ⟩ by using
these axioms. We use the definition of ∥�A∥ not only in an EDQM but also in
a DQM. We can do this because Bp is simply a part of {p, q, . . .}.

Theorem 2 (Complete axiomatization for orthonormal basis). If all ax-

ioms and rules of EPDQL are valid in a T-complete DQM ⟨X, { Y ?−−→}Y⊆X , { U−→
}U∈U , V ⟩, then {∥s∥|s ∈ Bp} is an orthonormal basis of ⟨X, { Y ?−−→}Y⊆X , { U−→
}U∈U ⟩.

Proof. For condition 1 of an orthonormal basis, the proof is straightforward from
T (s). For condition 2, the proof is straightforward from s∧A∧T (A) → ��(s →
A) for every A and the T-completeness of the model. For condition 3, suppose
x ∈ ∥s∥. From s → t∨ ∼ t, x ∈ ∥t∥ or x ∈ ∥ ∼ t∥. If x ∈ ∥t∥, from conditions 1
and 2, ∥s∥ = ∥t∥. If x ∈ ∥ ∼ t∥, there is no y ∈ X such that x ̸⊥ y and y ∈ ∥t∥.
Therefore, for all y ∈ ∥t∥, x⊥y. For condition 4, from ¬ � ⊥, condition 1 and
the definition of ∥�A∥, for any x ∈ X, there exist s ∈ Bp and y ∈ X such that
y ∈ ∥s∥ and x(s?)y. Therefore, all x ∈ X are related to some ∥s∥(s ∈ Bp) by ̸⊥.
This implies that

∩
s∈Bp

∥s∥⊥ = ∅. Therefore,
⊔

∥s∥ = (
∩

s∈Bp

∥s∥⊥)⊥ = X. ⊓⊔

Next, we consider multiple physical quantities. A Hilbert space has many of
orthonormal bases. In general, each physical quantity corresponds to a different
orthonormal basis. In a Hilbert space, we can generate another orthonormal basis
from a given one by applying unitary transformations. Therefore, if {a1, a2, . . .}
is an orthonormal basis of a Hilbert space and if U ∈ U , then {Ua1, Ua2, . . .}
is also an orthonormal basis of the Hilbert space. We introduce this notion into
the EDQM. We define xU ∈ X and sets YU ⊆ X and ObU below.

If x(U)y, then xU = y
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YU = {x ∈ X|∃y ∈ Y and y(U)x}
ObU = {YU ⊆ X|Y ∈ Ob}

Then, we can prove the following lemma and theorem for the EDQM in the
same way as for a Hilbert space.

Lemma 2. In any dynamic quantum frame ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩, for all
x, y ∈ X, if x⊥y, x(U)z and y(U)w, then z⊥w. Furthermore, if x ̸⊥ y, x(U)z
and y(U)w, then z ̸⊥ w.

Proof. For the sake of contradiction, suppose x⊥y, x(U)z, y(U)w and z ̸⊥ w.
Because U is adjoint, there exists v ∈ X such that w(U†)v and v ̸⊥ x. However,
this contradicts w(U†)y and the unitary functionality of U†.

The proof for the case of x ̸⊥ y is almost the same as the above proof. ⊓⊔

From this lemma, we can prove that (Y ⊥)U = YU
⊥.

Theorem 3. If Ob is an orthonormal basis of a dynamic quantum frame ⟨X, { Y ?−−→
}Y⊆X , { U−→}U∈U ⟩, then ObU is also an orthonormal basis of ⟨X, { Y ?−−→}Y⊆X , { U−→
}U∈U ⟩.

Proof. For condition 1 of an orthonormal basis, for the sake of contradiction,
suppose Y is testable but YU is not testable. Then, there exists x ∈ X such that
x⊥YU

⊥ and x ̸∈ YU . From Lemma 2 and the unitary functionality of U and U†,
xU†⊥Y ⊥ and xU† ̸∈ Y . This is a contradiction. Therefore, for all Y ∈ ObU , Y is
testable.

For condition 2, for the sake of contradiction, suppose Y ∈ ObU , Z ⊂ Y ,
Z ̸= Y , Z ̸= ∅ and that Z is testable. From Lemma 2 and the above argument,
we have YU† ∈ Ob, ZU† ⊂ YU† , ZU† ̸= YU† , ZU† ̸= ∅, and that ZU† is testable.
This contradicts the atomicity of the elements of Ob.

For condition 3, from Lemma 2, if Y⊥Z, then YU⊥ZU .
For condition 4, for the sake of contradiction, suppose

∩
Y ∈ObU

Y ⊥ ̸= ∅. Then,

there exists x ∈ X such that for all y ∈ Y ∈ ObU , x⊥y. From Lemma 2, for all
z ∈ Z ∈ Ob, xU†⊥z. This contradicts the completeness of Ob. ⊓⊔

From Theorem 3, the conditions for V (s), and unitary functionality, we can
prove that for all s ∈ Bp, ∥[U†]s∥ ∈ ObU in an EDQM. Furthermore, for all Y ∈
ObU , there exists t ∈ Bp such that ∥[U†]t∥ = Y . Therefore, we now introduce
new modal symbols �U for ObU . Because we have multiple symbols for unitary
evolution, we introduce as many symbols �U as there are U . We define ∥�U A∥
in an EDQM as follows.

∥�U A∥ = {x ∈ X| for all s ∈ Bp, if x(([U†]s)?)y, then y ∈ ∥A∥}

We add the following axioms to EPDQL and obtain a new axiom system
that we refer to as EPDQLU (extended propositional dynamic quantum logic
with unitary transformations of bases).
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(Test Generalization for U†(Bp)): If A → [([U†]s)?]B is provable for all s,
then infer A → �UB

(Testability Axiom for U†(Bp)): �UA → [([U†]s)?]A
(Testability of Basis): T ([U†]s)
(Atomicity of Basis): [U†]s ∧A ∧ T (A) → ��([U†]s → A)
(Orthogonality of Bases): [U†]s → [U†]t∨ ∼ [U†]t
(Completeness of Orthonormal Basis): ¬�U ⊥

We define these axioms simply by changing s ∈ Bp in the axioms of EPDQL
to [U†]s, and by changing � to �U . Note that some of these axioms are provable
in EPDQL if an axiom does not include �U .

Theorem 4. All axioms and rules of EPDQLU are valid in all EDQMs.

Proof. From the property of ObU and the definition of ∥ �U A∥, we can trace
the proof of Theorem 1. ⊓⊔

Theorem 5 (Complete axiomatization for orthonormal basis ObU). If

all axioms of EPDQLU are valid in a T-complete DQM ⟨X, { Y ?−−→}Y⊆X , { U−→
}U∈U , V ⟩, then {∥[U†]s∥|s ∈ Bp} is an orthonormal basis of ⟨X, { Y ?−−→}Y⊆X , { U−→
}U∈U ⟩.

Proof. We can trace the proof of Theorem 2. ⊓⊔

Another important notion for quantum physics ismutually unbiased bases in a
Hilbert space. Suppose a = {a1, a2, ..., ad} and b = {{b1, b2, ..., bd} are orthonor-
mal bases of a d-dimensional Hilbert space H. We say these two orthonormal
bases are mutually unbiased bases if |(ai, bj)|2 = 1/d for all i, j ∈ {1, 2, ..., d}
where (a, b) is the inner product of a and b. Intuitively, this concept repre-
sents that every element of the orthonormal basis equally contains the ele-
ments of the other orthonormal basis. We use this concept to describe some
physical quantities under the uncertainty principle. For example, {|0⟩, |1⟩} and
{(|0⟩ + |1⟩)/

√
2, (|0⟩ − |1⟩)/

√
2} in H2 are mutually unbiased bases. The situa-

tion is a little different because it is a concept in an infinite dimensional Hilbert
space H, but an orthonormal basis for position and an orthonormal basis for
momentum are mutually unbiased bases in H. However, in a dynamic quantum
frame, we can only determine whether states x and y are orthogonal or not. In
other words, we cannot represent the degree of non-orthogonality in a dynamic
quantum frame. Therefore, we abstract the notion of mutually unbiased bases
and define quasi-mutually unbiased bases in a dynamic quantum frame. We only
care if an element contains all elements of the other orthonormal basis or not
(that is, orthogonal or not). We say that orthonormal bases Ob and Ob′ are quasi-

mutually unbiased bases of a dynamic quantum frame ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩
if Ob and Ob′ satisfy the following conditions.

1. For all y ∈ Y ∈ Ob′ and Z ∈ Ob, there exists z ∈ Z such that y ̸⊥ z.
2. For all y ∈ Y ∈ Ob and Z ∈ Ob′, there exists z ∈ Z such that y ̸⊥ z.



Quantum Logic for Observation of Physical Quantities 13

We can use the following axioms for quasi-mutually unbiased bases of U .

T (A) ∧ ¬�U ¬�A → ��A
T (A) ∧ ¬� ¬�U A → ��A

Theorem 6. In an EDQM ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , Ob, V ⟩, if Ob and ObU are

quasi-mutually unbiased bases of ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩, then the axioms for

quasi-mutually unbiased bases of U are valid in ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , Ob, V ⟩.

Proof. Suppose T (A) and ¬ �U ¬ � A are true at x ∈ X. Then, there exist
y ∈ X and s such that x([U†]s?)y and y ∈ ∥� A∥. Because ∥[U†]s∥ is testable,
[U†]s is true at y by repeatability. Therefore, there exists Y ∈ ObU such that
y ∈ Y . From Lemma 1 and the assumption that Ob and ObU are quasi-mutually
unbiased bases, for all Z ∈ Ob, there exist t ∈ Bp and z ∈ Z such that ∥t∥ = Z
and y(t?)z. From y ∈ ∥ � A∥, A is true at z. From T (A) and atomicity, A is
true at all z′ ∈ Z. Therefore, A is true at all z ∈ Z ∈ Ob. Finally, from the
completeness of Ob and the testability of ∥A∥, ∥A∥ = X. Therefore, ��A is
true at x.

The proof for T (A)∧¬�¬�UA → ��A is almost the same as this proof. ⊓⊔

Theorem 7. In a T-complete DQM ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U , V ⟩, if {∥s∥|s ∈
Bp} and {∥[U†]s∥|s ∈ Bp} are orthonormal bases, and if the axioms for quasi-
mutually unbiased bases of U are valid, then {∥s∥|s ∈ Bp} and {∥[U†]s∥|s ∈ Bp}
are quasi-mutually unbiased bases of ⟨X, { Y ?−−→}Y⊆X , { U−→}U∈U ⟩.

Proof. For the sake of contradiction, suppose y ∈ Y ∈ {∥s∥|s ∈ Bp} but
that there is no z ∈ ∥[U†]t∥ such that y ̸⊥ z. From the T-completeness of
the model and the testability of ⊔, there exists A such that

⊔
{{∥[U†]s∥|s ∈

Bp} − ∥[U†]t∥} = ∥A∥. Because y⊥∥[U†]t∥, �UA is true at y. From y ∈ Y ∈
{∥s∥|s ∈ Bp}, ¬ � ¬ �U A is true at y. From the nature of an orthonormal
basis, ∥[U†]t∥ ∩ ∥A∥ = ∅ and [U†]t ̸= ∅. Therefore, there exists x ∈ X such that
x /∈ ∥A∥. This contradicts the validity of the axiom because T (A) and ¬�¬�UA
are true at y but ��A is not true at y.

The proof for the opposite direction is almost the same as this proof by using
T (A) ∧ ¬�U ¬�A → ��A. ⊓⊔

4 Conclusions and Remarks

We constructed a model for DQL with an orthonormal basis. We also introduced
new modal symbols and axioms for these symbols. These modal symbols bring a
new type of proposition to DQL, and these propositions are essential in quantum
physics.

We used a T-complete model in this study to express every testable subset
of X by formulas to establish some theorems. Another way to deal with testable
subsets is using formulas in some definitions. For example, we can change con-
dition 2 of an orthonormal basis as follows:
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If S ∈ Ob, and for all testable sets ∥A∥, if S ∩ ∥A∥ ̸= ∅, then S ⊆ ∥A∥.

If we use this definition, an orthonormal basis is defined for a DQM rather
than for a dynamic quantum frame. Under this definition, we do not have to
assume T-completeness because we need only deal with subsets of X that are
expressed by ∥A∥ for some A. However, if we use this definition, the discussion
becomes complicated in many ways. For example, as V (s) is already defined by
a DQM, we have to use complicated definitions to define the EDQM.

Based on the results of this study, if we develop many valued quantum logic,
we may be able to use mutually unbiased bases completely because many valued
quantum logic includes the notion of the degree of non-orthogonality. [25] can be
cited as one of the studies of many valued quantum logic. The degree of orthog-
onality is expressed by noting a number on the modal symbol for orthogonality.
However, to express the properties of a Hilbert space in more detail, more condi-
tions are required than the conditions introduced in [25]. Therefore, to combine
this study with the modal symbol that introduced the numerical value, a more
detailed analysis of the modal symbol with the numerical value is required.

Whether all DQMs have at least one orthonormal basis is debatable because
some DQMs might have no atomic states. If we use models that are created from
a concrete Hilbert space using the method in [2], these models obviously have
orthonormal bases.

[26] and [27] can be cited as studies that analyzed the orthogonal relation
in another way. Intuitively, in these studies, the orthogonal relation is analyzed
in a more abstract direction based on ortho logic (OL) rather than DQL. Some
conditions related to orthogonality are added to OL and its nature is analyzed.
Although the direction is slightly different from the analysis of the orthonormal
basis, it may be possible to analyze the orthogonality in more detail while main-
taining the degree of abstraction by combining it with the analysis of the model
constructed in this study.
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Abstract This manuscript introduces and studies a notion of cautious
distributed belief. Di�erent from the standard distributed belief, the cau-
tious distributed belief of a group is inconsistent only when all group
members are individually inconsistent. The paper presents basic results
about cautious distributed belief, investigates whether it inherits prop-
erties from individual belief, and compares it with standard distributed
belief. Although both notions are equivalent in the class of re�exive mod-
els, this is not the case in general. The propositional language extended
only with cautious distributed belief is strictly less expressive than the
propositional language extended only with standard distributed belief.
We, �nally, identify a minimal extension of the language making the
former as expressive as the latter.

Keywords: cautious distributed belief · distributed belief · epistemic
logic · expressivity · bisimilarity

1 Introduction

Epistemic logic (EL; [12]) is a simple and yet powerful framework for representing
the knowledge of a set of agents. Semantically, it typically relies on relational
`Kripke' models, assigning to each agent a binary indistinguishability relation
over possible worlds (i.e., possible states of a�airs). Syntactically, it uses the
agent's indistinguishability to de�ne her knowledge: at a world w an agent i
knows that φ is the case if and only if φ holds in all the situations that are,
for her, indistinguishable from w. Despite its simplicity, EL has become a wide-
spread tool, contributing to the formal study of complex multi-agent epistemic
phenomena in philosophy [9], computer science [6,14] and economics [4,15].

One of the most attractive features of EL is that one can reason not only
about individual knowledge, but also about di�erent forms of knowledge for
groups. A historically important example is the notion of common knowledge
[13], which is known to be crucial in social interactions.1 Another important
epistemic notion for groups, key in distributed systems, is that of distributed
knowledge [11,7,8]. Intuitively, a group has distributed knowledge of φ if and only
if φ follows from the combination of the individual knowledge of all its members.
In EL (which, recall, uses uncertainty to de�ne knowledge), this intuition has a

1 A group has common knowledge of φ if and only if everybody in the group knows
φ, everybody in the group knows that everybody in the group knows φ, and so on.
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natural representation: at a world w a group G has distributed knowledge of φ if
and only if φ holds in all the situations that all the members of the group consider
indistinguishable (i.e., if and only if φ holds in all the situations no one in the
group can distinguish) from w. In other words, the indistinguishability relation
for the distributed knowledge of a group G corresponds to the intersection of
the indistinguishability relation of G's members.

Since distributed knowledge is the result of combining the individual know-
ledge of di�erent agents, one can wonder whether agents might have inconsistent
distributed knowledge (i.e., whether it is possible for a set of agents to know
⊥ distributively). When one works with a truthful notion of knowledge (se-
mantically, when all indistinguishability relations are required to be re�exive),
distributed knowledge does not have this problem: all indistinguishability rela-
tions contain the re�exive edges, and thus their intersection will never be empty.
However, when one works with weaker notions of information, counterintuitive
situations might occur. For example, if one works with a notion of beliefs (typ-
ically represented by using a serial, transitive and Euclidean relation; see, e.g.,
[12]), it is possible for all agents to be consistent (i.e., no one of them believes
contradictions), and yet their distributed beliefs might contain ⊥.

This paper introduces and studies a notion of cautious distributed belief
(modality: D∀). It has the property that it does not become inconsistent in the
case of mutual inconsistency, picking instead a form of maximally consistent
combined information. The intuition behind it is that, although a group G as a
whole might be inconsistent at some world w (i.e., the set of worlds everybody
in G considers possible from w is empty), there might be consistent subgroups
among which the maximal ones become important. Considering notions of max-
imal consistency is a standard approach in non-monotonic reasoning for resolv-
ing potential con�icts.2 As its name suggest, D∀ uses these maximally consistent
subgroups of agents in a cautious way: at a world w a group G has cautious dis-
tributed belief that φ if and only if every maximally consistent subgroup of G
has distributed belief that φ.3

The manuscript is organised as follows. Section 2 recalls the de�nition of
a relational `Kripke' model as well as that of the standard distributed belief
operator D. Then it introduces the notion of cautious distributed belief, using a
relatively simple example to compare the two notions, and presenting some basic
results about it. Section 3 studies whether this notion of belief for groups inherits
properties from the individual beliefs of the group's members. Section 4 compares
the expressive power of both modalities, showing that a modal language with
only D∀ is strictly less expressive than a modal language with only D; it does so

2 Think, e.g., about the extensions of a theory in default logic [16], or the maximally
admissible (i.e., preferred) sets of arguments in abstract argumentation theory [5].
The idea has been also used within epistemic logic (e.g., by [2] in the context of
evidence-based beliefs) and also for distributed beliefs (by [10], in the context of
explicit beliefs de�ned via belief bases).

3 This corresponds to the skeptical reasoner in non-monotonic reasoning. There is also
an alternative that matches the credulous reasoner, discussed brie�y in Section 5.
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by providing a notion of bisimulation for D∀. Yet, the paper identi�es what it
is that D can see but D∀ cannot. Finally, Section 5 summarises the results and
discusses further research lines.

2 Basic de�nitions

Throughout this text, let A be a �nite non-empty set of agents and P be a
countable non-empty set of atomic propositions. The basic propositional lan-
guage (using ¬ and ∧ as primitive operators) is denoted by L. (Its semantic
interpretation is as usual.) Then, LX1,...,Xn

is the language extending L with
the operators X1, . . . , Xn. In particular, LD is L with the additional use of DG

for ∅ ̸= G ⊆ A, and LD∀ is L with the additional use of D∀
G for ∅ ̸= G ⊆ A.

De�nition 1 (Belief model) A belief model is a tuple M = ⟨W,R, v⟩ where
W is a non-empty set of possible worlds (also denoted as D(M)), R = {Ra ⊆
W ×W | a ∈ A} assigns an arbitrary accessibility relation to each agent a ∈ A,
and v : P → 2S is a valuation function. A pointed belief model is a pair (M, s)
with M a belief model and s ∈ D(M) a world in it. The class of all belief
models is denoted as M. Given ⟨W,R, v⟩ in M, a ∈ A and s ∈ W , the set
Ca(s) := {s′ ∈ W | sRas

′} is called a's conjecture set at s. The generalisation
to a set of agents G ⊆ A, called G's (combined) conjecture set at s, is de�ned
as CG(s) :=

⋂
a∈G Ca(s). ◀

Belief models are nothing but multi-agent Kripke (relational) models. Thus,
they allow us to represent not only the beliefs each individual agent has, but
also di�erent belief notions for groups. As discussed in the introduction, the
focus here is the novel notion of cautious distributed beliefs (D∀), together with
its relationship with the well-known notion of distributed beliefs (D). For the
semantic interpretation of the �rst, the following de�nitions will be useful.

De�nition 2 (Consistency and maximal consistency) Let ⟨W,R, v⟩ be in
M. Take sets of agents ∅ ⊂ G′ ⊆ G ⊆ A and a world s ∈ W . The set G′ is
consistent at s if and only if CG′(s) ̸= ∅. It is maximally consistent at s w.r.t.
G (notation: G′ ⊆max

s G) if and only if it is consistent at s and, additionally,
every H satisfying G′ ⊂ H ⊆ G is inconsistent (i.e., CH(s) = ∅). Finally, the
set C∀

G(s) :=
⋃

G′⊆max
s G CG′(s) (the consistent (combined) conjecture set of G at

s) contains the worlds that are relevant for the maximally consistent subgroups
of G at world s. The cautious distributed belief relation R∀

G ⊆ D(M)×D(M),
given by sR∀

Gt i� t ∈ C∀
G(s), will simplify some later work. ◀

Here is the semantic interpretation of the two operators, D and D∀, together
with the standard operator for individual belief B. We also present the semantics
of an additional constant ≍G, which will be useful later. Languages using these
operators will be discussed in Section 4.

De�nition 3 (Two types of distributed belief) Let (M, s) be a pointed be-
lief model with M = ⟨W,R, v⟩; take a ∈ A and a non-empty G ⊆ A. Then,
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M, s ⊨ Ba φ i� ∀s′ ∈ Ca(s): M, s′ ⊨ φ,

M, s ⊨ DG φ i� ∀s′ ∈ CG(s): M, s′ ⊨ φ,

M, s ⊨ D∀
G φ i� ∀G′ ⊆max

s G, ∀s′ ∈ CG′(s): M, s′ ⊨ φ

(equivalently, ∀s′ such that sR∀
Gs

′: M, s′ ⊨ φ),4

M, s ⊨ ≍G i� CG(s) = ∅.

A formula φ is valid in a class of belief models C (notation: C ⊨ φ) when φ
is true in every world of every model in C. A formula is valid (notation: ⊨ φ)
when M ⊨ φ. ◀

Note the di�erence between DG and D∀
G. On the one hand, DG φ holds at s

when every world in the conjecture set of G satis�es φ.5 On the other hand,D∀
G φ

holds at s when every world in the conjecture set of every maximally consistent
subgroup of G satis�es φ. In other words, D∀

G φ holds at s if and only if every
maximally consistent subgroup of G has distributed belief of φ. Note also how
≍G simply expresses the fact that the conjecture set of G is inconsistent.

Here is an simple example showing the di�erences between D and D∀.

Example 1 Consider the belief model M below.6 Note how, at w1, a believes p
to be true and q to be false (M, w1,⊨ Ba p∧Ba ¬q). Nevertheless, b is uncertain
about p but believes q to be true (M, w1 ⊨ (¬Bb p ∧ ¬Bb ¬p) ∧Bb q). Finally, c
believes p but is uncertain about q (i.e., M, w1,⊨ Bc p ∧ (¬Bc q ∧ ¬Bc ¬q)).

w1 : {p, q}

w2 : {p} w3 : {q} w4 : {p}

a
b

b, c

a, b, c a, b, c a, b, c

c

Consider �rst the group G1 = {a, b}. On the one hand, both members of G1 are
individually consistent at w1 and yet CG1

(w1) = ∅; thus, at w1, the maximally
consistent subgroups are {a} and {b}. Their conjecture sets are Ca(w1) = {w2}
and Cb(w1) = {w1, w3}, and hence G1's consistent conjecture set is C∀

G1
(w1) =

{w1, w2, w3}. Thus, M, w1 ⊨ ¬D∀
G1
p ∧ ¬D∀

G1
q. On the other hand, when we

consider standard distributed belief, we see that M, w1 ⊨ DG1 p ∧DG1 q. This is

4 The two de�nitions are equivalent. The �rst makes explicit the two quanti�cation
steps; the second, given in terms of the group's cautious distributed belief relation,
reveals that D∀

G is in fact a normal modality.
5 In particular, individual belief operators Ba can be de�ned in terms of D, as D{a} φ
(abbreviated as Da φ) holds in a world s if and only if M, s′ ⊨ φ for all s′ ∈ Ca(s).

6 Note: the individual relations are serial, transitive and Euclidean. While the paper
uses the term �belief� in a rather loose way, these three properties are the ones
commonly associated to a belief operator.
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however due to the fact that CG1
(w1) = ∅ and we end up quantifying over an

empty set. Thus, we also get M, w1 ⊨ DG1
⊥.

Now c joins the group, G2 = {a, b, c}. On the one hand, at w1 both b and
c are consistent (i.e., they can `consistently combine information'); still, a and
c are not. Thus, the maximally consistent sets are {a} and {b, c}. The relevant
conjecture sets are now Ca(w1) = {w2} and C{b,c}(w1) = {w1}, so C∀

G2
(w1) =

{w1, w2}. Then, M, w1 ⊨ D∀
G2
p∧¬D∀

G2
q (the latter because, even though b and

c together believe q, agent a remains `a loner' and still believes that q is false).
On the other hand, the situation with standard distributed belief remains as for
G1: M, w1 ⊨ DG2 p ∧DG2 q ∧DG2 ⊥. ◀

Some basic results about D∀
G. The standard notion of distributed belief, DG,

can be inconsistent even when every agent in G is consistent. The �rst result here
shows that this is not the case for cautious distributed belief: it is inconsistent
if and only if all agents in G are inconsistent.

Proposition 1 For every non-empty G ⊆ A we have ⊨ D∀
G ⊥ ↔

∧
a∈G

Ba ⊥.

Proof. Take any M, any s ∈ D(M) and any non-empty G ⊆ A. (⇒) If M, s ⊨
D∀

G ⊥ then, because no world satis�es ⊥, either CG′(s) = ∅ for all G′ ⊆max
s G,

or there is no G′ satisfying G′ ⊆max
s G. But, by de�nition, no G′ satisfying

G′ ⊆max
s G is s.t. CG′(s) = ∅. Hence, there is no G′ satisfying G′ ⊆max

s G,
which means every G′ ⊆ G is s.t. CG′(s) = ∅. In particular, all singletons {a}
for a ∈ G are s.t. Ca(s) = ∅, and thus M, s ⊨

∧
a∈GBa ⊥. (⇐) If M, s ⊨∧

a∈GBa ⊥ then Ca(s) = ∅ for every a ∈ G. Hence, every non-empty G′ ⊆ G is

s.t. CG′(s) = ∅, so there is no G′ satisfying G′ ⊆max
s G. Thus, M, s ⊨ D∀

G ⊥.■

For another basic result, recall that individual belief operators (Ba for a ∈ A)
can be expressed using the distributed belief operator for singleton groups (Da).
The same can be done with cautious distributed belief. For any world s and
any agent a, there is at most one maximally consistent subgroup of {a}, namely
{a} itself. Then, Ca(s) = C∀

a (s) and hence agent a's individual belief and {a}'s
cautious distributed belief coincide.

Proposition 2 ⊨ Baφ↔ D∀
{a} φ. ■

Finally, an important property of standard distributed belief is coalition
monotonicity : if a group H ⊆ A has standard distributed belief that φ, then
so does any extension G ⊇ H (thus, H ⊆ G ⊆ A implies ⊨ DH φ → DG φ).
This is not the case for cautious distributed belief. This is because the agents
that join the group might not be consistent with any of the ones that were there
before. In such cases, when consistent, they will be part of a di�erent maxim-
ally consistent subgroup, which might not have the distributed belief φ. This is
shown in Example 1, where M, w1 ⊨ D∀

{b} q and yet M, w1 ⊭ D∀
{a,b} q. Thus,

Fact 1 ⊭ D∀
H φ→ D∀

G φ for H ⊆ G ⊆ A. ■
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Frame condition Characterising formula

seriality (l): consistency :

∀s ∈ W ∃t ∈ W . sSt 2φ → 3φ

re�exivity (r): truthfulness of knowledge/belief :

∀s ∈ W . sSs 2φ → φ

transitivity (t): positive introspection:

∀s, t, u ∈ W . ((sSt & tSu) ⇒ sSu) 2φ → 22φ

symmetry (s): truthfulness of possible knowledge/belief :

∀s, t ∈ W . (sSt ⇒ tSs) 32φ → φ

Euclidicity (e): negative introspection:

∀s, t, u ∈ W . ((sSt & sSu) ⇒ tSu) ¬2φ → 2¬2φ

Table 1: Relational properties and their well-known characterising formula.

3 Inheriting relational properties

When one studies a notion of knowledge/belief for groups, it is interesting to
�nd out whether it inherits the properties of the knowledge/beliefs of the indi-
viduals. For example, suppose that the individual knowledge of all agents in a
group is truthful and both positively and negatively introspective. Then, it is
well-known that, while the group's common knowledge inherits all these prop-
erties, the group's general knowledge7 inherits only truthfulness (i.e., it might
not be positively or negatively introspective). Similar studies have been made
for notions of belief [1].

This section studies which properties of individual belief are inherited by cau-
tious distributed belief. The discussion is rather semantic, focussing on whether
certain frame conditions on individual indistinguishability relations are inherited
by the relation that de�nes cautious distributed belief (see Footnote 4). The con-
nection between these conditions and the properties of knowledge/belief is made
thanks to the well-known correspondence between the frame conditions and the
validity of certain modal formulas [3, Chapter 3]. Using S for an arbitrary binary
relation and 2 (3) for its corresponding normal universal (existential) modality,
Table 1 lists some of these frame conditions, together with the formulas that
characterise them (and its intuitive epistemic/doxastic reading).8

Here are, then, the needed de�nitions.
7 A group has general knowledge of φ if and only if everybody in the group knows φ.
8 More precisely, a frame (a model without the valuation) has the given relational
property if and only if the formula is valid in the frame (i.e., it is true in any world
of the model under any valuation).
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w1 w2 w3

b

a

a

b

a, b

(a) F1

w1

w2

a

a

a, b

(b) F2

w1

w2 w3

a b
a, b a, b

(c) F3

w1

w2 w3

a
a, ba, b

b

(d) F4

w1

w2 w3

a a

a

a, b aa

(e) F5

Figure 1: Counterexamples for the proof of Proposition 3

De�nition 4 (Inheriting properties) Let x ∈ {l, r, t, s, e} be a frame condi-
tion, and let F ⊆ {l, r, t, s, e} be a collection of them. Let G ⊆ A be a non-empty
set of agents, each one of them associated to a binary relation under a given
domain W . A relation SG ⊆W ×W de�ned in terms of the individual relations
for agents in G (e.g., their union/intersection) inherits the condition x under
the additional conditions in F if and only if SG has the property x whenever all
the relations in {Ri | i ∈ G} have all the properties in F ∪ {x}. ◀

For singleton groups, all properties are preserved. This is because if G is a
singleton {a}, then the cautious distributed belief relation R∀

{a} is identical to
a's individual relation Ra.

Proposition 3 Given a collection of relations {Ra ⊆ W ×W | a ∈ G} for a
group G ⊆ A with at least two agents, the relation R∀

G ⊆W ×W

(1) inherits seriality under F = ∅;
(2) inherits re�exivity under F = ∅;
(3) (a) does not inherit transitivity under any F ⊆ {l, e};

(b) inherits transitivity under any F ⊇ {r} (also under any F ⊇ {l, s}9);
(c) inherits transitivity under any F ⊇ {s};

(4) (a) does not inherit symmetry under any F ⊆ {t, e};
(b) does not inherit symmetry under any F ⊆ {l, e};
(c) inherits symmetry under any F ⊇ {r} (also under any F ⊇ {l, t});

(5) (a) does not inherit Euclidicity under any F ⊆ {l, s};
(b) does not inherit Euclidicity under any F ⊆ {l, t};

9 Inheritance under any F ⊆ {l, s} follows immediately from inheritance under any
F ⊆ {r}, since seriality, transitivity and symmetry together imply re�exivity. The
same applies for the properties in (3)(c) and (5)(d) below.
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(c) does not inherit Euclidicity under any F ⊆ {t, s};
(d) inherits Euclidicity under any F ⊇ {r} (also under any F ⊇ {l, t, s}).

Proof.

(1) Pick any s ∈ W . Every relation in {Ri | i ∈ G} is serial so, since G ̸= ∅,
there is a ∈ G such that Ra is serial, and a is consistent at s (Ca(s) ̸= ∅).
Thus, G has at least one subgroup G′ that is maximally consistent at s (one
containing a), and hence there is t ∈ CG′(s) ⊆ C∀

G(s). Then, R
∀
G is serial.

(2) Pick any s ∈W . Every relation in {Ri | i ∈ G} is re�exive, so s ∈ Ca(s) for
every a ∈ G, and then the only maximally consistent subgroup is G itself.
Thus, CG(s) = C∀

G(s) and therefore s ∈ C∀
G(s). Then, R

∀
G is re�exive.

(3) (a) In frame F1 (Figure 1a), relations Ra and Rb are transitive, serial and
Euclidean. Still, R∀

{a,b} = {(w1, w1), (w1, w2), (w2, w2), (w2, w3), (w3, w3)}
is not transitive.

(b) Pick any s, t, u ∈ W such that sR∀
Gt and tR

∀
Gu. By re�exivity, G is the

only maximally consistent subgroup at both s and t, so CG(s) = C∀
G(s)

and CG(t) = C∀
G(t). Then, sRit and tRiu for every i ∈ G, which by

transitivity implies sRiu for all such i. Thus, u ∈ C∀
G(s) and hence

sR∀
Gu. Then, R

∀
G is transitive.

(c) Pick any s, t, u ∈W such that sR∀
Gt and tR

∀
Gu. Then, there are H1 ⊆max

s

G and H2 ⊆max
t G such that t ∈ CH1

(s) and u ∈ CH2
(t). By individual

symmetry, s ∈ CH1(t) and t ∈ CH2(u); then, by individual transitivity,
t ∈ CH1(t) and t ∈ CH2(t). But then, H1 ∪ H2 is consistent at t and,
since H2 is maximally consistent at t, then (H1 ∪ H2) ⊆ H2, that is,
H1 ⊆ H2. Hence, the previous u ∈ CH2

(t) implies u ∈ CH1
(t) which,

together with t ∈ CH1
(s) and individual transitivity implies u ∈ CH1

(s).
Finally, since H1 is maximally consistent at s w.r.t. G, u ∈ C∀

G(s), and
hence sR∀

Gu.
(4) (a) In frame F2 (Figure 1b), relations Ra and Rb are symmetric, transit-

ive and Euclidean. Still, R∀
{a,b} = {(w1, w1), (w1, w2), (w2, w2)} is not

symmetric.
(b) In frame F3 (Figure 1c), relations Ra and Rb are symmetric, serial and

Euclidean. Still, R∀
{a,b} = {(w1, w2), (w1, w3), (w2, w2), (w3, w3)} is not

symmetric.
(c) Pick any s, t ∈W such that sR∀

Gt. By re�exivity, G is the only maximally
consistent subgroup at both s and t, so CG(s) = C∀

G(s) and CG(t) =
C∀

G(t). Then, sRit for every i ∈ G, which by symmetry implies tRis for
all such i. Thus, s ∈ C∀

G(t) and hence tR∀
Gs. Then, R

∀
G is symmetric.

(5) (a) In frame F3 (Figure 1c), relations Ra and Rb are Euclidean, serial and
symmetric. Still, R∀

{a,b} = {(w1, w2), (w1, w3), (w2, w2), (w3, w3)} is not
Euclidean.

(b) In frame F4 (Figure 1d), relations Ra and Rb are Euclidean, serial and
transitive. Still, R∀

{a,b} = {(w1, w2), (w1, w3), (w2, w2), (w3, w3)} is not
Euclidean.

(c) In frame F5 (Figure 1e), relations Ra and Rb are Euclidean, symmetric
and transitive. Still, R∀

{a,b} = (W × W ) \ {(w2, w1), (w2, w3)} is not
Euclidean.
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(d) Pick any s, t, u ∈ W such that sR∀
Gt and sR

∀
Gu. By re�exivity, G is the

only maximally consistent subgroup at both s and t, so CG(s) = C∀
G(s)

and CG(t) = C∀
G(t). Then, sRit and sRiu for every i ∈ G, which by

Euclidicity implies tRiu for all such i. Thus, u ∈ C∀
G(t) and hence tR∀

Gu.
Then, R∀

G is Euclidean. ■

Thus, seriality and re�exivity are each inherited without additional assump-
tions. Symmetry and Euclidicity are both inherited in the presence of re�exivity;
transitivity is inherited in the presence of re�exivity, but also in the presence
of symmetry. Thus, just as with individual belief, cautious distributed belief is
factive in re�exive models, and it is consistent in serial models. However, it does
not need to be introspective (neither positively nor negatively), even when the
model has the frame condition (transitivity and Euclidicity, respectively).

These results are quite di�erent from the corresponding ones for the standard
notion of distributed belief. In fact, with the exception of re�exive models (in
which cautious and standard distributed belief coincide; see Proposition 4 below),
the behaviour of cautious distributed belief is, in this respect, the opposite of
that of standard distributed belief. For the latter, transitivity, symmetry and
Euclidicity are each inherited without additional assumptions, while seriality is
is inherited only in the presence of re�exivity [1].

4 Relationship between DG and D∀
G

This section discusses the relationship between standard and cautious distributed
belief. The following de�nitions will be useful.

De�nition 5 Let L1 and L2 be two languages whose formulas can be evaluated
over pointed belief models.

� L2 is at least as expressive as L1 (notation: L1 ≼ L2) if and only if every
formula in L1 has a semantically equivalent formula in L2: for every α1 ∈ L1

there is α2 ∈ L2 s.t., for every pointed belief model (M, s), we have M, s ⊨ α1

if and only if M, s ⊨ α2.
10

� L1 and L1 are equally expressive (notation: L1 ≈ L2) if and only if L1 ≼ L2

and L2 ≼ L1.

� L2 is strictly more expressive than L1 (notation: L1 ≺ L2) if and only if
L1 ≼ L2 and L2 ̸≼ L1.

11 ◀

The proposition below provides some connections betweenDG andD∀
G. First,

D∀
G is de�nable in terms of DG and Boolean operators. Second, both notions

coincide when the indistinguishability relations are re�exive.
10 A typical strategy for proving L1 ≼ L2 is to give a translation tr : L1 → L2 such

that for every (M, s) we have M, s ⊨ α1 i� M, s ⊨ tr(α1). The crucial cases are
those for the operators in L1 that do not occur in L2.

11 A typical strategy for proving L1 ̸≼ L2 is to �nd two pointed models that satisfy
exactly the same formulas in L2, and yet can be distinguished by a formula in L1.
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Proposition 4

(1) ⊨ D∀
G φ↔

∧
G′⊆G

((
¬DG′⊥ ∧

∧
G′⊂H⊆G

DH⊥
)
→ DG′φ

)
.

(2) Let T be the class of all belief models whose accessibility relations are all
re�exive. Then, T ⊨ D∀

G φ↔ DGφ.

Proof.

(1) Suppose M, s ⊨ D∀
G φ. By de�nition, this is the case if and only if every

G′ ⊆max
s G is such that M, s ⊨ DG′φ. But the fact that G′ ⊆max

s G (i.e.,
G′ is a maximally consistent subgroup of G at s) is equivalently stated as
M, s ⊨ ¬DG′⊥ ∧

∧
G′⊂H⊆GDH⊥.12 Then, the previous is the case if and

only if M, s ⊨
∧

G′⊆G

(
(¬DG′⊥ ∧

∧
G′⊂H⊆GDH⊥) → DG′φ

)
.

(2) Immediate, as CG(s) = C∀
G(s) holds for any re�exive belief model M, world

s ∈ D(M) and group ∅ ̸= G ⊆ A (see the proof of Proposition 3(2)). ■

Using the �rst part of Proposition 4, one can de�ne a translation that takes
any formula in LD∀ and returns a semantically equivalent formula in LD . Thus,
it already establishes a connection between LD and LD∀ .

Corollary 1 LD is at least as expressive as LD∀ (in symbols: LD∀ ≼ LD). ■

A question remains: is LD∀ also at least as expressive as LD (so the languages
are equally expressive), or is LD strictly more expressive than LD∀ (so there are
situations that LD∀ cannot tell apart, and yet they can be distinguished by LD)?

When discussing the relative expressivity of modal languages, it is useful to
have a semantic notion guaranteeing that two pointed models cannot be distin-
guished by a language. A multi-agent version of the standard notion of bisimula-
tion (see, e.g., [3, Section 2.2]) plays this role for the basic multi-agent epistemic
language. When the modality for standard distributed knowledge is added (i.e.,
for LD), one rather requires the notion of collective bisimulation [17], which asks
for the conditions of the standard bisimulation to be ful�lled by the intersection
relation of every group. Still, the results below will show that this notion is not
the adequate one for our language LD∀ .

The notion of LD∀-bisimulation de�ned below will be shown to be the ad-
equate one for LD∀ : it implies that two pointed models cannot be distinguished
by LD∀ (Proposition 5), and it exists between any image-�nite pointed models
that cannot be distinguished by the language (Proposition 6).

De�nition 6 (LD∀-Bisimulation) Let M = ⟨W,R, v⟩ and M′ = ⟨W ′, R′, v′⟩
be two belief models. A non-empty relation Z ⊆ D(M) × D(M′) is a LD∀-
bisimulation between M and M′ if and only if Zss′ implies all of the following.

Atom. For all p ∈ P : s ∈ v(p) if and only if s′ ∈ v′(p).

Forth. For all G ⊆ A, for all t ∈ D(M): if there is H ⊆max
s G such that

t ∈ CH(s), then there are H ′ ⊆max
s′ G and t′ ∈ CH′(s′) such that Ztt′.13

12 Note: this relies on the fact that G is �nite (because A is �nite).
13 Equivalently: for all G ⊆ A, for all t ∈ D(M), if sR∀

Gt, then ∃t′ such that s′R∀
Gt

′

and Ztt′.
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Back. For all G ⊆ A, for all t′ ∈ D(M′): if there is H ′ ⊆max
s′ G such that

t′ ∈ CH′(s′), then there are H ⊆max
s G and t ∈ CH(s) such that Ztt′.14

Write Z : M, s -D∀ M′, s′ when Z is a LD∀-bisimulation between M and M′

with Zss′. Write M, s -D∀ M′, s when there is such a bisimulation Z. ◀

A LD∀-bisimulation follows the idea of a standard one. First, LD∀-bisimilar
worlds should satisfy the same atoms. Then, if one of them has a `relevant
successor' t, the other should also have a `relevant successor' t′ and, moreover,
these successors should be LD∀-bisimilar. The only di�erence between a LD∀-
bisimulation and others in the literature is what `a relevant successor' means.
In a multi-agent standard bisimulation, a `relevant successor' is any world that
can be reached through the relation Ri, for some agent i ∈ A. In a collective
bisimulation, a `relevant successor' is any world that can be reached through
the intersection of the relations of the individuals in G, for some group G ⊆ A.
In the just de�ned LD∀ bisimulation, a `relevant successor' is any world that
belongs to the conjecture set of some maximally consistent subgroup of G, for
some non-empty set of agents G ⊆ A.15 As it is shown below, this de�nition
guarantees that every world in W that is relevant for cautious distributed belief
in (M, s) has a `matching' world in W ′ that is relevant for cautious distributed
belief in (M′, s′) (and vice versa). (For an example of LD∀-bisimilar models see
the proof of fact 2 below.)

De�nition 7 (LD∀-equivalence) Two pointed models M, s and M′, s′ are
LD∀-equivalent (notation: M, s↭D∀ M′, s′) if and only if, for every φ ∈ LD∀ ,

M, s ⊨ φ if and only if M′, s′ ⊨ φ.

When the models are clear from context, we will write simply s↭D∀ s′. ◀

Proposition 5 (LD∀-Bisimilarity implies LD∀-equivalence) LetM, s and
M′, s′ be pointed belief models. Then,

M, s -D∀ M′, s′ implies M, s↭D∀ M′, s′. ■

Proof. First, pull out the universal quanti�cation over formulas hidden in ↭D∀ ,
so the statement becomes �for every formula in LD∀ : if two pointed models are
D∀-bisimilar, then they agree on the formula's truth-value�. Now, proceed by
structural induction on formulas in LD∀ . The case for atomic propositions fol-
lows from the atom clause, and those for Boolean operators (in our case, ¬ and
∧) follow from their respective inductive hypotheses.

For formulas expressing cautious distributed belief, work by contraposition.
(⇒) Suppose M′, s′ ⊭ D∀

G φ. Then, there are H ′ ⊆max
s′ G and t′ ∈ CH′(s′)

14 Equivalently: for all G ⊆ A, for all t′ ∈ D(M′), if s′R∀
Gt

′, then ∃t such that sR∀
Gt

and Ztt′.
15 Note then that, while a collective bisimulation requires that a group is inconsistent

at any world bisimilar to one at which the group is inconsistent, this not the case
for a LD∀ -bisimulation. The models in the proof of Fact 2 below show this.
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such that M′, t′ ⊭ φ. But M, s -D∀ M′, s′ so, by the back clause, there are
H ⊆max

s G and t ∈ CH(s) such that M, t -D∀ M′, t′. By inductive hypothesis,
the latter implies M, t↭D∀ M′, t′, so from the earlier M′, t′ ⊭ φ it follows that

M, t ⊭ φ. Thus, M, s ⊭ D∀
G φ. (⇐) Similar, using the forth clause instead. ■

A weakened version of the converse holds: if two image-�nite pointed belief
models are LD∀-equivalent, then there is a LD∀-bisimulation between them.

Proposition 6 (LD∀-Equivalence implies LD∀-bisimilarity)Let M, s and

M′, s′ be image-�nite pointed belief models.16 Then,

M, s↭D∀ M′, s′ implies M, s -D∀ M′, s′.

Proof. It will be shown that ↭D∀ is in fact a LD∀-bisimulation. To do this,
take any s and s′ such that s↭D∀ s′; it will be shown that the three clauses of
De�nition 6 are satis�ed.

Atom. It is clear that s and s′ satisfy the same atomic propositions.

Forth. Take any ∅ ⊂ G ⊆ A; suppose there are H ⊆max
s G and t ∈ CH(s). For

the sake of a contradiction, suppose there are no H ′ ⊆max
s′ G and t′ ∈ CH′(s′)

such that t ↭D∀ t′; in other words, suppose that every H ′ ⊆max
s′ G and

t′ ∈ CH′(s′) are such that t ↭̸ D∀ t′. This means that if t′i ∈ C∀
G(s

′) then

t ↭̸ D∀ t′i: for every world t′i ∈ C∀
G(s

′) there is ψi ∈ LD∀ such that M, t ⊭ ψi

and M′, t′i ⊨ ψi.
Now note that C∀

G(s
′) is non-empty and �nite.17 Thus, ψ :=

∨
t′i∈C∀

G(s′) ψi

is a non-contradictory formula (as C∀
G(s

′) is non-empty) in LD∀ (as C∀
G(s

′)

is �nite). Hence, M, t ⊭ ψ and yet M′, t′i ⊨ ψ for every t′i ∈ C∀
G(s

′). Since
H ⊆max

s G and t ∈ CH(s), the former implies M, s ⊭ D∀
G ψ; nevertheless,

the latter implies M′, s′ ⊨ D∀
G ψ. This contradicts the original assumption

s ↭̸ D∀ s′. Therefore, there is some H ′ ⊆max
s′ G and some t′ ∈ CH′(s′) such

that t↭D∀ t′.

Back. Analogous to the previous clause. ■

We have now enough tools to answer the question above.

Fact 2 LD∀ is not at least as expressive as LD (in symbols: LD ̸≼ LD∀).

Proof. Consider the belief models shown below.

16 A belief model M is image-�nite i� Ca(s) is �nite for every s ∈ D(M) and every
a ∈ A (equivalently, i� CG(s) is �nite for every s ∈ D(M) and every G ⊆ A).

17 It is non-empty because, from H ⊆max
s G and t ∈ CH(s), it follows that t ∈ Ca(s)

for some a ∈ H ⊆ G, and thus M, s ⊨ ¬D∀
a ⊥. But s ↭D∀ s′, so M′, s′ ⊨ ¬D∀

a ⊥,
so a is consistent at s′ in M′. Then, since a is in G, there should be an H ′ ⊆max

s′ G
with a ∈ H ′. But, once again, a is consistent, so CH′(s′) ̸= ∅ and thus C∀

G(s
′) ̸= ∅.

It is �nite because the models are image-�nite.
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w : {p}

u : ∅

a, b
a, b

M

w′ : {p}

u′
1 : ∅ u′

2 : ∅

a b
a, b a, b

M′
■

Use MCG(s) to denote all subgroups of G that are maximally consistent at s.
The dashed edges de�ne a bisimulation between M, w and M′, w′. Indeed,

� (w,w′). The atom clause is immediate. Now forth. For G = {a}, note that
MC {a}(w) = {{a}} and thus C∀

{a}(w) = {u}. But then MC {a}(w
′) = {{a}}

and thus C∀
{a}(w

′) = {u′1}; moreover, Zuu′1. The case for G = {b} is analog-

ous. For G = {a, b}, note that MC {a,b}(w) = {{a, b}} and thus C∀
{a,b}(w) =

{u}. But then MC {a,b}(w
′) = {{a}, {b}} and thus C∀

{a,b}(w
′) = {u′1, u′2};

moreover, Zuu′1 and Zuu′2. The back clause follows a similar pattern.

� (u,u′
1). The atom clause is immediate. Consider forth. For G = {a}, note

that MC {a}(u) = {{a}} and thus C∀
{a}(u) = {u}. But then MC {a}(u

′
1) =

{{a}} and thus C∀
{a}(u

′) = {u′1}; moreover, Zuu′1. The case for G = {b}
is analogous. For G = {a, b}, note that MC {a,b}(u) = {{a, b}} and thus

C∀
{a,b}(u) = {u}. But then MC {a,b}(u

′
1) = {{a, b}} and thus C∀

{a,b}(u
′
1) =

{u′1}; moreover, Zuu′1. The back clause follows a similar pattern.

� (u,u′
2). As the previous case.

Thus, M,w -D∀ M′, w′ and hence, by Proposition 5, M, w ↭D∀ M′, w′. How-
ever, the pointed models can be distinguished by a formula in LD , as M, w ⊭
D{a,b} ⊥ and yet M′, w′ ⊨ D{a,b} ⊥. Therefore LD ̸≼ LD∀ . ■

Note how the belief models used above are serial, transitive and Euclidean:
the kind of models one normally uses for representing a proper notion of belief.

Corollary 2 LD is strictly more expressive than LD∀ (symbols: LD∀ ≺ LD).■

Thus, LD∀ can `see' strictly less than what LD can. The proposition below
shows that the group inconsistency constant ≍G introduced before is exactly
what the former needs to `see' exactly as much as the latter.

Proposition 7 LD∀,≍ and LD are equally expressive (symbols: LD∀,≍ ≈ LD).

Proof. Clearly, ⊨ ≍G ↔ DG ⊥. Thus, both ≍G and D∀
G are de�nable in LD (for

the latter, recall Proposition 4), so LD∀,≍ ≼ LD .

For proving LD ≼ LD∀,≍ , it is enough to show that DG is de�nable in LD∀,≍ :

⊨ DG φ↔ (≍G ∨D∀
G φ).
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(⇒) Suppose M, s ⊨ DG φ, so every t ∈ CG(s) is such that M, t ⊨ φ. Assume
further that M, s ⊭ ≍G. Then, MCG(s) = {G} and thus M, s ⊨ D∀

G φ. (⇐)
Proceed by contraposition: suppose M, s ⊭ DG φ. Then, there is t ∈ CG(s) such
that M, t ⊭ φ. Thus, CG(s) ̸= ∅, so MCG(s) = {G}. From the former, M, s ⊭
≍G; from t ∈ CG(s) and the latter, M, s ⊭ D∀

G φ. Thus, M, s ⊭ ≍G ∨D∀
G φ. ■

5 Summary and further work

This paper has introduced the notion of cautious distributed belief. While a set
of agents G has distributed belief that φ (DG φ) if and only if φ is true in every
world in the conjecture set of the group, the group has cautious distributed belief
that φ (D∀

G φ) if and only if φ is true in every world in the conjecture set of every
maximally consistent subgroup of G.

The paper has discussed basic properties of D∀, showing, e.g., how it is
inconsistent if and only if all agents in the group are inconsistent. Then, the
paper has studied whether this group notion inherits properties from the indi-
vidual notions of the group's members. It has been shown that consistency and
truthfulness (technically, seriality and re�exivity) are inherited, and that so are
both positive and negative introspection (technically, transitivity and Euclidi-
city) when the epistemic/doxastic notion is also truthful (technically, re�exive).
This is the opposite of what happens with standard distributed belief, which
inherits both positive and negative introspection (transitivity, symmetry and
Euclidicity) without additional assumptions, and inherits consistency (seriality)
only when the individual notions are truthful (re�exive). The �nal part of the
paper has focussed on the relationship between D∀

G and DG. It has been show
that, while they coincide in re�exive models (i.e., cautions distributed know-
ledge coincides with standard distributed knowledge), in general the latter (D)
is strictly more expressive than the former (D∀). This di�erence in expressivity
has been proved by providing a notion of structural equivalence that, within
image-�nite models, characterises modal equivalence w.r.t to LD∀ (a language
extending the propositional one with D∀). Finally, the paper has identi�ed the
`missing piece' that makes a language with D∀ as expressive as one with D.

Among the questions that still need answer, the main ones are an axiom
system for the language LD∀ and a study of its complexity pro�le. Among the
further research lines, the idea of dealing with potential group inconsistencies by
looking at maximally consistent subgroups leads to another interesting alternat-
ive: a group has bold distributed belief that φ (say, D∃

G φ) if and only if φ is true
in every world in the conjecture set of some maximally consistent subgroup of G.
The quanti�cation pattern of this alternative notion (∃∀) suggest that, di�erent
from D∀, the bold distributed belief operator is not a normal modal operator.
Thus, further technical tools will be needed for studying its pro�le.
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Abstract. We extend epistemic stit theory with a modality Iαφ, meant
to express that at some moment agent α had a present-directed intention
toward the realization of φ. The semantics is based on the extension of
stit frames with special topologies associated to agents. The open sets
of the associated topology are interpreted as present-directed intentions,
that support whether an agent had an intention of realizing a specific
state of affairs when it chose one of its available actions and executed it.
As an important application, we use Iαφ to formalize intentional action
and intentional responsibility. We present an axiom system for our logic
of intentionality, and prove that it is sound and complete.
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1 Introduction

Suppose that you are a lawyer. You are part of the prosecution in a trial where the
defendant is being accused of murder. The case is as follows: while driving, the
defendant ran over and killed a traffic officer who was standing at a crossing walk.
At the trial, the defense is seeking for a charge of only involuntary manslaughter,
while you and the prosecution contend that it was either second- or first-degree
murder. This means that the verdict revolves around the intentionality of the
defendant. If the prosecuting team—to which you belong—is able to provide
sufficient evidence for claiming that the defendant had an intention to kill the
traffic officer, then the verdict would be either of second- or first-degree murder—
according to whether the murder was either planned or unplanned. If the defense
shows that the evidence does not support that there was an intention to kill—as
would be the case if, for instance, the defendant was drunk while driving and
had no real motive for killing the traffic officer—then the verdict would be of
only manslaughter.

This example shows that, at least in criminal law, intentionality is of the
utmost importance. For many reasons, this importance has carried over to phi-
losophy, giving rise to a complex field of research. In the opening lines of Stanford
Encyclopedia of Philosophy ’s current entry for intention, [28] writes:

Philosophical perplexity about intention begins with its appearance in
three guises: intention for the future, as when we intend to complete
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this entry by the end of the month; the intention with which someone
acts, as I am typing with the further intention of writing an introductory
sentence; and intentional action, as in the fact that I am typing these
words intentionally.

Across the philosophical literature, it is well-known that modelling inten-
tionality is difficult, that it leads to many interesting discussions, and that no
camp has the last word on what the best framework for analyzing the concept
is. However, most authors agree with the quote above, and thus identify three
main forms of intentionality:

1. Future-directed intentions: following the interpretation of [7] and [8], future-
directed intentions are elements in plans that agents make. In the quote
above, when the author mentions that he intends to complete his entry by
the end of the month, the word intends refers to future-directed intentions.
The literature also acknowledges the existence of so-called present-directed
intentions, referring to mental states that regard what agents intend to do
now.

2. Intentional action: following [10], who offered a precise account of claims
advanced by [3], intentional action is a mode of acting. In the quote above,
when the author mentions that he types words while writing his entry, and
that he is doing so intentionally, he is referring to the intentional action of
hitting the keys in the keyboard.

3. Intention-with-which: following [14], intention-with-which is a description of
the primary reason that an agent has for acting in a specific way. In the
quote above, when the author mentions that he types words toward the goal
of writing an introductory sentence, then writing an introductory sentence
is the intention-with-which he types.

The main problem in philosophy of intention, then, has been to find unity in
these three senses of intentionality. According to [28], such an endeavor matters
for questions in philosophy of mind, but also for ethics, for epistemology, and
for the nature of practical reason. Intuitively speaking, neither of these three
“guises” of intentionality is the same as another, but they are all closely related.

To address the challenge of incorporating intentions—seen either as mental
states or as modes of acting—into the stit-theoretic conception of agency, we
use present-directed intentions. The idea is to associate a special topology to
each agent. In any such associated topology, all the open sets are dense,3 and
they represent the agent’s present-directed intentions—written “p-d intentions,”
from here on—at the moment of acting. Thus, if an open set U in the topology
associated to α supports φ (U ⊆ φ), then U is a p-d intention of α toward
the realization of φ. Roughly speaking, the proposal for the semantics of the
modality Iαφ, then, is as follows: Iαφ holds at an index iff at such an index α

3 An open set is dense in a topology iff it is consistent with all the other non-empty
open sets of the topology (see Definition 2).
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p-d intended φ. For all practical purposes, then, the conjunction [α]φ ∧ Iα[α]φ
is meant to evoke that α has intentionally seen to it that φ.4

Instead of spinning around the concepts informally, let us dive into the formal
definitions for our notion of intentionality.

2 A Semantics of Intentionality

We start by reminding the reader of some basic definitions from General Topol-
ogy. For any other basic definitions that we might be taking for granted, the
reader is referred to [30] or [17] as proper background textbooks.

Definition 1 (Topological spaces). Let X be a set. τ ⊆ 2X is called a topol-
ogy on X if it meets the following requirements: (a) X, ∅ ∈ τ ; (b)closure under
finite intersections: if U, V ∈ τ , then U ∩ V ∈ τ ; (c) closure under arbitrary
unions: for a family G ⊆ τ ,

⋃
G ∈ τ .

A topological space, then, is a pair (X, τ), where X is a set and τ is a
topology on X. The elements of τ are called open sets. Complements of open
sets are called closed sets. For A ⊆ X, the interior of A is defined as the ⊆-largest
open set included in A, and will be denoted by int A. The closure of A is defined
as the ⊆-least closed set including A, and will be denoted by Cl(A). Standard
result in General Topology are that (a) for x ∈ X and A ⊆ X, x ∈ int A iff
there exists an open set U such that x ∈ U ⊆ A; and (b) x ∈ Cl(A) iff every
open set U such that x ∈ U intersects A (U ∩A ̸= ∅).

Definition 2 (Density). For a topological space (X, τ) and A ⊆ X, A is said
to be τ -dense in X iff Cl(A) = X, or, equivalently, if for every non-empty open
set O ∈ τ , O ∩A ̸= ∅.

With these basic definitions, let us introduce a logic that we call intentional
epistemic stit theory.

Definition 3 (Syntax of intentional epistemic stit theory). Given a finite
set Ags of agent names and a countable set of propositions P , the grammar for
the formal language LI is given by

φ := p | ¬φ | φ ∧ ψ | □φ | [α]φ | Kαφ | Iαφ.

where p ∈ P and α ∈ Ags.

□φ is meant to express the historical necessity of φ. ♢φ abbreviates ¬□¬φ,
and it encodes the historical possibility of φ. [α]φ stands for ‘agent α has seen
to it that φ.’ Kαφ stands for ‘agent α knew φ,’ and Iαφ expresses that ‘α had
4 Of course, this reading of the modality Iαφ and of the conjunction [α]φ ∧ Iα[α]φ

positions our proposal as belonging to a particular philosophical standpoint on the
relation between intentions and intentional action—in the context of the discussion,
on the trends in philosophy of intention, at the beginning of the present section. We
address the details of such a standpoint in Subsection 3.
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a p-d intention toward the realization of φ’, or that ‘α p-d intended φ,’ or that
‘α p-d intended that φ would hold.’

As for the semantics, the structures on which the formulas of LI are evaluated
are based on what we call intentional epistemic branching-time frames.

Definition 4 (Iebt-frames & models).
A tuple

〈
M,⊏, Ags,Choice, {∼α}α∈Ags , τ

〉
is called an intentional epis-

temic branching-time frame ( iebt-frame for short) iff

– M is a non-empty set of moments and ⊏ is a strict partial ordering on M
satisfying no backward branching: for m,m′,m′′ ∈M such that m′ ⊏ m and
m′′ ⊏ m, either m′ = m′′ or m′ ⊏ m′′ or m′′ ⊏ m′. Each maximal ⊏-chain
is called a history. The set of all histories is denoted by H. For m ∈ M ,
Hm := {h ∈ H;m ∈ h}. Tuples ⟨m,h⟩ such that m ∈M , h ∈ H, and m ∈ h,
are called indices, and the set of indices is denoted by I(M ×H).

– Choice is a function that maps each agent α and moment m to a partition
Choicemα of Hm, where the cells of such a partition represent α’s available
choices of action at m. For m ∈ M and h ∈ Hm, Choicemα (h) denotes
the cell of the partition Choicemα that includes h. This cell represents the
choice of action that α has performed at index ⟨m,h⟩, and I refer to it as
α’s current choice of action at ⟨m,h⟩. Choice satisfies two conditions:
• (NC) No choice between undivided histories: for α ∈ Ags and h, h′ ∈ Hm,

if m′ ∈ h ∩ h′ for some m′ ⊐ m, then h ∈ L iff h′ ∈ L for every
L ∈ Choicemα .

• (IA) Independence of agency: a function s on Ags is called a selection
function at m if it assigns to each α a member of Choicemα . If Selectm

denotes the set of all selection functions at m, then, for m ∈M and s ∈
Selectm,

⋂
α∈Ags s(α) ̸= ∅. This condition establishes that concurrent

actions by distinct agents must be independent: the choices of action of
a given agent cannot affect the choices available to another (see [6] and
[20] for a discussion of this property).

– For α ∈ Ags, ∼α is an equivalence relation on the set of indices, meant
to express the epistemic indistinguishability relation for α, that satisfies the
following conditions:
• (OAC) Own action condition: for index ⟨m,h⟩, ⟨m,h⟩ ∼α ⟨m,h′⟩ for every
h′ ∈ Choicemα (h).

• (Unif− H) Uniformity of historical possibility: if ⟨m,h⟩ ∼α ⟨m′, h′⟩,
then, for h∗ ∈ Hm, there exists h′∗ ∈ Hm′ such that ⟨m,h∗⟩ ∼α ⟨m′, h′∗⟩.

For α ∈ Ags, two notions of α’s information set at ⟨m,h⟩ are defined: the
set π□

α [⟨m,h⟩] := {⟨m′, h′⟩ ;∃h′′ ∈ Hm′s.t.⟨m,h⟩ ∼α ⟨m′, h′′⟩} is α’s ex ante
information set; and the set πα [⟨m,h⟩] := {⟨m′, h′⟩ ; ⟨m,h⟩ ∼α ⟨m′, h′⟩} is
α’s ex interim information set.

– τ is a function that assigns to each α ∈ Ags and index ⟨m,h⟩ a topology
τ
⟨m,h⟩
α on π□

α [⟨m,h⟩]. This is the topology of α’s intentionality at ⟨m,h⟩,
where each open set is interpreted as a p-d intention of α at ⟨m,h⟩. τ must
satisfy the following conditions:
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• (CI) Consistency of intention: for every non-empty U, V ∈ τ
⟨m,h⟩
α , U ∩

V ̸= ∅. In other words, every non-empty U is τ ⟨m,h⟩
α -dense.

• (KI) Knowledge of intention: for α ∈ Ags and index ⟨m,h⟩, if π□
α [⟨m,h⟩] =

π□
α [⟨m′, h′⟩], then τ

⟨m,h⟩
α = τ

⟨m′,h′⟩
α .

An iebt-model M, then, results from adding a valuation function V to an
iebt-frame, where V : P → 2I(M×H) assigns to each atomic proposition a set of
indices.

Definition 5 (Evaluation rules for intentionality). Let M be an iebt-
model. The semantics on M for the formulas of LI are recursively defined as
follows:

M, ⟨m,h⟩ |= p iff ⟨m,h⟩ ∈ V(p)
M, ⟨m,h⟩ |= ¬φ iff M, ⟨m,h⟩ ̸|= φ
M, ⟨m,h⟩ |= φ ∧ ψ iff M, ⟨m,h⟩ |= φ and M, ⟨m,h⟩ |= ψ
M, ⟨m,h⟩ |= □φ iff for h′ ∈ Hm,M, ⟨m,h′⟩ |= φ
M, ⟨m,h⟩ |= [α]φ iff for h′ ∈ Choicemα (h),M, ⟨m,h′⟩ |= φ
M, ⟨m,h⟩ |= Kαφ iff for ⟨m′, h′⟩ s.t. ⟨m,h⟩ ∼α ⟨m′, h′⟩,

M, ⟨m′, h′⟩ |= φ

M, ⟨m,h⟩ |= Iαφ iff there exists U ∈ τ
⟨m,h⟩
α s.t. U ⊆ ∥φ∥,

where ∥φ∥ denotes the set {⟨m,h⟩ ∈ I(M ×H);M, ⟨m,h⟩ |= φ}.

Therefore, one says that at index ⟨m,h⟩ α p-d intended φ iff there exists
U ∈ τ

⟨m,h⟩
α that supports φ. Following [2], we will say that at ⟨m,h⟩ α had

ex ante knowledge of φ iff M, ⟨m,h⟩ |= □Kαφ—that is, iff at ⟨m,h⟩ it was
historically settled that the agent knew φ.
Discussion

The reader might be curious as to why we chose a topological semantics.
There are two main reasons:

1. Inspired by [21]’s and [15, Chapter 5]’s ideas behind using neighborhood
semantics for formalizing intentionality, we opted to represent intentions
as special subsets of indices in bt-models.5 However, unlike these two ap-
proaches, we do not agree with the idea that p-d intentions should not be
closed under logical consequence—in the case of logically omniscient agents.
Thus, we started considering the idea of topologies of intentions, and we
found out that we could use topological notions like open, closed, and dense
sets to qualitatively describe a relation between p-d intentions and inten-
tional action—in terms of measurement, closeness, and consistency. In our
formalism, p-d intentions are “close” to both actual and intentional action,
in the sense that any p-d intention supporting an agent’s action—something

5 As pointed out by [27] in his lecture notes for a course on neighborhood semantics,
“[s]ets paired with a distinguished collections of subsets are ubiquitous in many areas
of mathematics.”



6 A.I. Ramírez Abarca and J. Broersen

that will be necessary for intentional action—must be consistent with all
other p-d intentions at the moment of acting. This is the reason behind the
requirement that each open set is dense.

2. Topological semantics generalize standard relational semantics, and, in the
words of [26, Chapter 1, p. 2], “topological spaces are equipped with well-
studied basic operators such as the interior and closure operators which,
alone or in combination with each other, succinctly interpret different modal-
ities, giving a better understanding of their axiomatic properties.”

It is important to emphasize that, for α ∈ Ags and index ⟨m,h⟩, the topology
τ
⟨m,h⟩
α is a topology on α’s ex ante information set. This implies that our seman-

tics satisfy what we call the knowledge-to-intention property and the knowledge-
of-intention property :

– Knowledge-to-intention property : all p-d intentions are included in an agent’s
ex ante information set. To clarify, this property is reflected by the validity of
the formula □Kαφ→ Iαφ. [10] stated that intentions should concern states
of affairs that an agent considers to be epistemically possible. In other words,
an agent would be irrational in intending a state of affairs that the agent
itself has ruled out, knowing that it is impossible for such a state of affairs
to happen. We agree with this claim: an agent cannot but intend everything
already known to be settled, because it would be irrational to do otherwise.6

– Knowledge-of-intention property : at an index an agent α always knew ex
ante its p-d intentions. To clarify, this property is reflected by the fact that
the formulas Iαφ → □KαIαφ and ¬Iαφ → □Kα¬Iαφ are valid. This is a
desirable property in virtue of a relatively usual assumption of positive and
negative introspection of one’s own intentionality. According to [23], who
formalize the relation between intentions and beliefs, agents have positive
and negative introspection of their intentions with respect to their beliefs (see
also [19] and [16]). This means that formulas corresponding to Iαφ→ BαIαφ
and ¬Iαφ→ Bα¬Iαφ are valid in their logics. [10] supported this claim, and
takes it further so as to include positive and negative introspection of one’s
intentions with respect to ex ante knowledge, just as we do here.

In order to illustrate our semantics of intentionality, let us use iebt-models
to present a formal analysis of a simple example.

Example 1. Recall the situation described at the beginning of this section, where
you are a lawyer in the prosecution of a driver that ran over—and killed—a traffic
officer. Consider the iebt-model M depicted in Figure 1.

Here, Ags = {driver}, and m1 is a moment. There are two histories (h1
and h2) passing through m1. At m1 the choices of action available to driver
are the following: R1, standing for the choice of running over the traffic officer,

6 Observe that α’s ex ante knowledge, at a given index, is itself a p-d intention of α,
as witnessed by the fact that, since τ

⟨m,h⟩
α is a topology on α’s ex ante information

set, such an information set must be an element of the topology.
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R1 R2

m1

Choicem1
driver

h2h1

k

Fig. 1: Driver example

and R2, standing for the choice of stopping the car. According to the choice
performed, time moves on either into history h1 or into history h2. As implied
by the statement of the example, h1 is the actual history.

Here, driver is assumed to distinguish ⟨m1, h1⟩ from ⟨m1, h2⟩. Thus, at ev-
ery index based on m1 driver knew her choice of action. Moreover, driver’s ex
ante information set at the actual index ⟨m1, h1⟩, denoted by π□

driver [⟨m1, h1⟩],
is the set {⟨m1, h1⟩ , ⟨m1, h2⟩}, which coincides with π□

driver [⟨m1, h2⟩]. As for
driver’s intentionality, consider the topology τ ⟨m1,h1⟩

driver . Since π□
driver [⟨m1, h1⟩] =

π□
driver [⟨m1, h2⟩], frame condition (KI) implies that τ ⟨m1,h1⟩

driver = τ
⟨m1,h2⟩
driver . The non-

empty open sets of such a topology, then, are represented using circles and ellipses
in the diagram. More precisely, τ ⟨m1,h1⟩

driver =
{
∅, π□

driver [⟨m1, h1⟩] , {⟨m1, h1⟩}
}
.

Let k stand for the atomic proposition ‘the traffic officer has been killed.’
According to Definition 5, this atomic proposition and the formulas that are
recursively built with it can be taken as true or false depending on the index
of evaluation. For instance, M, ⟨m1, h1⟩ |= Kdriver[driver]k: at the actual index,
driver knowingly killed the traffic officer. As for formulas involving driver’s in-
tentionality, let U denote the set {⟨m1, h1⟩}. Then U ∈ τ

⟨m1,h1⟩
driver and U ⊆ ∥k∥.

Thus, according to Definition 5, M, ⟨m1, h1⟩ |= Idriverk: at the actual index
driver had a p-d intention—or p-d intended—that the traffic officer was killed.
The same U attests to the fact that M, ⟨m1, h1⟩ |= Idriver[driver]k: at the actual
index driver had a p-d intention to see to it that the traffic officer was killed. As
such, for all practical purposes, the driver knowingly and intentionally killed the
officer—which makes it reasonable for her to be blamed of second- or first-degree
murder.
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3 Logic-based Properties & Axiomatization

3.1 Properties

Let us review some properties of the logic that we have referred to as intentional
epistemic stit theory, in terms of formulas that are either valid or invalid with
respect to iebt-models. The logic-based properties of the modalities □φ and
[α]φ are the same in traditional stit theory. The properties of knowledge and its
interplay with agency are the same as the ones addressed in [1]: Kα is an S5
operator such that the formulas associated to frame conditions (OAC)—Kαφ →
[α]φ—and (Unif− H)—♢Kαφ→ Kα♢φ—are valid.

As for operator Iα, it turns out to be a KD45 operator. The validity of the
KD45 schemata has the following consequences for our notion of intentionality,
then:

– The validity of (K) implies that if at an index an agent p-d intended φ then
the agent p-d intended all the logical consequences of φ. This property im-
plies that our notion of intentionality is vulnerable to a particular version of
the so-called side-effect problem (see [8], [12], and [10]). We do not agree with
the claim that intention should not be closed under logical consequence. The
reason is that we deal with idealized thinkers, who are logically omniscient
and know, resp. believe, all the logical consequences of what they know,
resp. believe. For idealized thinkers of this kind, then, we find it reasonable
to assume that they will intend the logical consequences of whatever they
intend.

– The validity of (D) (Iαφ→ ¬Iα¬φ) implies that if at an index an agent p-d
intended φ then at that index the agent must not have p-d intended ¬φ.
Most of the authors whose formalization of intention has been discussed in
this section ([19], [12,23], [10], and [8]) support the idea that, at a specific
point in time, future-directed intentions, p-d intentions, intentional actions,
and intentions-with-which should be respectively consistent, and we agree
with them.

– The validity of (4) (Iαφ → IαIαφ) implies that if an agent p-d intended φ
then at that index the agent p-d intended to p-d intend φ. Although this
property is endorsed neither by [12] nor by [19], nor by [23], for instance,
we consider it characteristic of p-d intentions, just as [9]: the knowledge-
of-intention property implies that at an index an agent’s p-d intentions are
known ex ante, so that the knowledge-to-intention property implies that the
agent cannot but have p-d intended to have those p-d intentions at that
index.

– The validity of (5) (¬Iαφ→ Iα¬Iαφ) implies that if at an index an agent did
not p-d intend φ then at that index the agent p-d intended to not p-d intend
φ. Just as with the above property, out of all the works reviewed in this
section, only [9] supports this property, as do we: the knowledge-of-intention
property implies that at an index an agent’s lack of a p-d intention toward
the realization of φ is known ex ante, so that the knowledge-to-intention
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property implies that the agent cannot but have p-d intended to not have
had such a p-d intention at that index.

Furthermore, the validity, resp. invalidity, of the following formulas, with
respect to the class of iebt-models, captures important properties of the interplay
between the modalities of intentional epistemic stit theory:

1. (a) ̸|= Iαφ→ Iα[α]φ: it is not necessarily true that if at an index an agent p-
d intended φ, then at that index the agent p-d intended to see to it that φ.
This property refers to a distinction between intending that φ is the case
and intending to be the material author of φ, on the other. For instance,
suppose that I am a dictator displaying psychopathic traits. I have an
intention toward the bombing of a neighboring country, but I do not
intend for me to actually press any button deploying a bomb. Although
some authors claim that the most primal notion of intending always
refers to “intending to do” (see, for instance, [29] and [25]), we support the
idea—consistent with [7]’s seminal thesis that future-directed intentions
are elements in complex plans—that an agent can intend the realization
of some state of affairs without intending to be the one realizing it.7 Once
again, a good example of this lies in “mastermind” agents that delegate
actions to subordinates. The distinction between intending that φ is the
case, on the one hand, and intending to actually see to it that φ, on
the other, is all the more relevant in responsibility attribution: although
my subordinate pilots were the ones deploying the bombs, it is me who
should stand trial in The Hague. To illustrate this property, consider a
variation of Example 1. Suppose that driver did not want to run over
the traffic officer herself, but, still, she had a p-d intention that the traffic
officer would get killed. A diagram of this situation is included in Figure
2.
Observe that τ

⟨m1,h3⟩
driver =

{
∅, π□

driver [⟨m1, h3⟩] , {⟨m1, h3⟩}
}
. Let U =

{⟨m1, h3⟩}. Then U ⊆ ∥k∥. This means that M, ⟨m1, h3⟩ |= Idriverk.
However, there does not exist an open set included in ∥[driver]k∥, which
means that M, ⟨m1, h3⟩ |= ¬Idriver[driver]k.

(b) ̸|= Iα[α]φ → [α]φ ∧ Iα[α]φ: it is not necessarily true that if at an index
an agent p-d intended to see to it that φ, then at that index the agent has
intentionally seen to it that φ. This property is related to the common
assumption—following the ideas presented by [13]—that intending does
not lead to intentionally doing. For instance, recall that I could have
intended to start my car and still not have taken any action toward
starting it. Therefore, this property is desirable for our interpretation of
the conjunction [α]φ∧Iα[α]φ—according to which [α]φ∧Iα[α]φ expresses
that α has intentionally seen to it that φ. To illustrate this property,

7 [15, Chapter 4, p. 163] explicitly states that there is a distinction between intending
and intending to do. He writes: “[t]here are two different types of future-directed
intentions: I can intend to perform a certain action, or I can intend to realize a
certain state of affairs.”
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R1 R2

m1

Choicem1
driver

h3h2h1

k k

Fig. 2: Another driver example

consider Example 1: here, M, ⟨m1, h2⟩ |= Iα[driver]k and M, ⟨m1, h2⟩ |=
¬[driver]k: at ⟨m1, h2⟩ driver p-d intended to kill the traffic officer, but
at such an index driver did not intentionally kill the traffic officer.

(c) |= Iα[α]φ → Iαφ: if at an index an agent p-d intended to see to it that
φ, then at that index the agent p-d intended φ. Since we interpret the
conjunction [α]φ∧ Iα[α]φ as α intentionally doing φ, then this property
implies that intentional action implies intending in our framework. Thus,
our notion of intentionality falls under a philosophical standpoint that [7]
called the Simple View. The Simple View considers that, for an agent
to intentionally do φ, the agent must also intend that φ is the case.
Although [7] heavily objected to the Simple View, we find it appropriate
for agents that are idealized thinkers. The validity of this formula follows
from the validity of schema (T ) for [α], Necessitation for Iα, and the
validity of schema (K) for Iα.

(d) ̸|= [α]φ → Iαφ: it is not necessarily true that if at an index an agent
has seen to it that φ, then at that index the agent p-d intended φ. This
property, as well as its consequences in the present framework, reflects
the desirable tenets that (i) not all actions follow a specific p-d intention,
and that (ii) not all actions are intentional.

2. (a) ̸|= Kαφ → Iαφ: it is not necessarily true that if at an index an agent
knew φ, then at that index the agent p-d intended φ. In light of the
validity of the formulas associated to frame condition (OAC), Kαφ is
logically equivalent to Kα[α]φ. To know φ, then, is to knowingly do φ.
Therefore, this property—which can be reformulated as ̸|= Kα[α]φ →
Iαφ—reflects the desirable tenet that knowingly doing φ does not imply
intending φ. An example of this situation is when someone else forced
your hand. For instance, consider yet another variation of Example 1.
Suppose, once again, that driver did not want to run over the traffic
officer herself. By previously threatening to injure your family if you
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refused to follow her instructions, driver forced you into taking your car
and running over the traffic officer.

(b) ̸|= [α]φ ∧ Iα[α]φ→ Kα[α]φ: it is not necessarily true that if at an index
an agent has seen to it that φ and the agent p-d intended to see to it
that φ, then at that index the agent has knowingly seen to it that φ.
This property entails that our framework allows us to model situations
where an agent intentionally does φ without knowingly doing φ. A good
example of the viability of such situations is when somebody intends to
win a fair coin-flip and wins it by choosing heads—they could not have
known that heads would make them win, but they still intentionally won.

(c) |= □Kαφ → Iαφ: if at an index an agent knew φ ex ante, then at that
index the agent p-d intended φ. The validity of □Kαφ → Iαφ reflects
what we called the knowledge-to-intention property in the discussion
right after Definition 5.

3. (a) |= Iαφ → □KαIαφ: if at an index an agent p-d intended φ, then at
that index the agent knew ex ante that it p-d intended φ. Together with
the formula in item 3b below, the validity of Iαφ → □KαIαφ reflects
what we called the knowledge-of-intention property in the discussion
right after Definition 5, concerning the fact that at an index an agent
must have known ex ante its p-d intentions. Now, such a property is
connected to frame condition (KI) in Definition 4. Indeed, the formula
Iαφ → □KαIαφ defines (KI), such that an iebt-frame including τ that
potentially violates (KI) satisfies (KI) iff Iαφ → □KαIαφ is valid with
respect to said frame. A proof of validity of the formula is straightfor-
ward.

(b) |= ¬Iαφ → □Kα¬Iαφ: if at an index an agent did not p-d intend φ,
then at that index the agent knew ex ante that it did not p-d intend φ.
In the proof system for intentional epistemic stit theory presented in
Subsection 3.2, this formula can be derived using the one in item 3a
above, so it is also valid.

Recall that at the introduction we mentioned that one of the main problems
in philosophy of intention is the quest for unity in the three forms of intentional-
ity (future-directed intentions, intentional action, and intention-with-which). The
validity of the KD45 schemata for Iα, then, coupled with the logic-based prop-
erties in item 1 above, somewhat settle where our interpretation of intentionality
stands with respect to this problem. To clarify, first observe that we prioritize
p-d intentions—which lie in the same category as future-directed intentions—
and base on them both intentional action and intention-with-which. On the one
hand, our framework’s view on the relation between p-d intentions and inten-
tional action is as follows: since we identify α’s intentionally doing φ with the
conjunction [α]φ ∧ Iα[α]φ, then, for an action to count as intentional, an agent
must have had a p-d intention of performing that action. In other words, at
an index α has intentionally seen to it that φ only if α p-d intended to see to
it that φ—that is, only if Iα[α]φ holds. Therefore, the validity of the formula
Iα[α]φ → Iαφ (item 1c) implies that, for α to intentionally do φ, α must have
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p-d intended that φ would be the case. As mentioned before, this means that
our treatment of intentionality falls under what [7] referred to as the Simple
View. On the other hand, our framework’s view on the relation between p-d
intentions and intention-with-which is as follows: the validity of □Kαφ → Iαφ
(item 2c), together with the validity of schema (K) for Iα, implies that the for-
mula (□Kα(φ → ψ) ∧ Iαφ) → Iαψ is valid. Therefore, if at an index α both
knew ex ante that [α]φ → ψ and has intentionally seen to it that φ, then the
realization of ψ is an intention-with-which α has seen to it that φ—the formula
(□Kα([α]φ→ ψ) ∧ ([α]φ ∧ Iα[α]φ)) → Iαψ is valid.

3.2 Axiomatization

In this subsection we introduce a proof systems for our logic:

Definition 6 (Proof system for intentional epistemic stit theory). Let
ΛI be the proof system defined by the following axioms and rules of inference:

– (Axioms) All classical tautologies from propositional logic; the S5 schemata
for □, [α], and Kα; the KD schemata for Iα; and the following schemata
for the interactions between modalities:

□φ→ [α]φ (SET )
For n ≥ 1 and pairwise different α1, . . . , αn,∧

1≤k≤n ♢[αi]φi → ♢
(∧

1≤k≤n[αi]φi

)
(IA)

Kαφ→ [α]φ (OAC)
♢Kαφ→ Kα♢φ (Unif −H)
□Kαφ→ Iαφ (InN)
Iαφ→ □KαIαφ (KI)

– (Rules of inference) Modus Ponens, Substitution, and Necessitation for all
modal operators.

Schemata (SET ) and (IA) are standard in basic stit theory. Schema (OAC),
resp. (Unif −H), characterizes syntactically frame condition (OAC), resp. frame
condition (Unif− H). Schema (InN)—where ‘InN’ stands for intentional neces-
sity—characterizes syntactically what I called the knowledge-to-intention prop-
erty. Schema (KI)—where ‘KI’ stands for knowledge of intention—characterizes
syntactically the knowledge-of-intention property, as well as frame condition (KI).

Remark 1. Schemata (4) and (5) for Iα, as well as schema (⋆)¬Iαφ→ □Kα¬Iαφ
and schema (Den) ♢Iαφ→ Kα⟨Iα⟩φ, are important ΛI -theorems.

As for metalogic properties of intentional epistemic stit theory, the results of
soundness and completeness for ΛI are stated in the following theorem, whose
proof is relegated to Appendix A:

Theorem 1. The proof system ΛI is sound and complete with respect to the
class of iebt-models.

⊓⊔
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The proof of Theorem 1 is the main technical contribution of this chapter. As
for soundness, the proof is standard. As for completeness, the proof is a two-step
process. First, we introduce a Kripke semantics for the logic—entirely based on
relations on sets of possible worlds. In such a semantics, the formulas of LI are
evaluated on Kripke-ies-models (Definition 9). We prove completeness of ΛI with
respect to the class of these structures, via the well-known technique of canonical
models. Secondly, we provide a truth-preserving correspondence between Kripke-
ies-models and a sub-class of iebt-models. Thus, completeness with respect to
Kripke-ies-models yields completeness with respect to iebt-models. The second
step implies associating a topological model to a Kripke model, such that both
satisfy the same formulas at same indices. This is done via so-called Alexandrov
spaces (Definition 7), with a technique inspired by [26] (see also [4] and [5]).

4 Conclusion

We want to conclude this work with a brief exploration of an important topic for
future work: using our theory of intentionality in the formalization of responsi-
bility attribution.

As first argued by [11] and afterwards by [15], one can classify the broad
notion of responsibility in three categories: (1) causal responsibility, (2) infor-
mational responsibility, and (3) motivational responsibility. When talking causal
responsibility, one wants to provide answers to the question “who is the material
author of a given circumstance?” Informational responsibility concerns the ques-
tion “did the author of a given circumstance behave consciously while performing
the action that brought on such a circumstance?” Motivational responsibility, in
turn, concerns the question “did the author of a given circumstance behave in-
tentionally while performing the action that brought on such a circumstance?”

Observe, then, that we can model these three categories using intentional
epistemic stit theory. In the spirit of [24], consider the following characterizations:

– Causal Responsibility : characterized by the formula [α]φ ∧ ♢¬[α]φ, so that
agent α was causally responsible for bringing about φ iff α saw to it that φ
and it was possible for α to not see to it that φ,

– Informational Responsibility : characterized by the formulaKα[α]φ∧Kα♢¬φ,
so that α was informationally responsible for bringing about φ iff α know-
ingly saw to it that φ and α knew that it was possible to refrain from seeing
to it that φ.

– Motivational Responsibility : characterized by the formula Iα[α]φ ∧Kα♢¬φ,
so that α was motivationally responsible for bringing about φ iff α intention-
ally saw to it that φ and α knew that it was possible to refrain from seeing
to it that φ.

Now, [11]’s initial motivation for categorizing the notion of responsibility was
mens rea. As it turns out, our logic can also be used to formalize the modes of
mens rea.
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Suppose that φ stands for an illegal outcome, or a criminal offense. Thus,
one can characterize the mens rea mode purposefully, for criminal agent α, with
the formula (Kα[α]φ ∧ Iα[α]φ). This formula holds at ⟨m,h⟩ iff at this index
α was causally, informationally, and motivationally responsible for φ at ⟨m,h⟩.
Similarly, one can characterize the mens rea mode knowingly with the formula
Kα[α]φ ∧ Iα[α]φ. This formula holds at ⟨m,h⟩ iff at this index α was causally
responsible, but not motivationally responsible, for φ at the index. As for the
mens rea mode recklessly, one can characterize it with the formula ([α]θ → φ)∧
[α]θ∧Kα♢ ([α]θ → φ). This formula holds at ⟨m,h⟩ iff at this index (a) α causally
brought about θ such that φ is a logical consequence of α’s seeing to it that θ,
and (b) α knew that it was possible that its bringing about θ could have implied
φ. As for the mens rea mode negligently, one can characterize it with the formula
([α]θ → φ)∧[α]θ∧□Kβ ([α]θ → φ), where β represents a legally reasonable agent.
This formula holds at ⟨m,h⟩ iff at this index (a) α causally brought about θ such
that φ is a logical consequence of α’s seeing to it that θ, and (b) a reasonable
agent β would have known ex ante about such a logical consequence. Strict
liability offenses are charged and tried without appealing to any mens rea mental
state. Typically, offenses of this kind can be divided in two main categories (see
[22] and [18]): (1) minor infractions—such as speeding, overtime parking, or not
signaling for a turn—for which the justification of reaching verdicts without
requiring proof of mens rea is made on the grounds of regulatory expediency;
and (2) serious crimes that pose a danger to society—such as statutory rape or
felony murder—for which conviction without proof of mens rea is justified on the
grounds of maximizing the deterrent effect of the penalty. For both categories,
and if φ is a strict liability offense, one can characterize the mode strict liability—
for criminal agent α—using α’s causal-active responsibility for φ.
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Appendix A Proofs of Soundness and Completeness

A.1 Soundness

Proposition 1. The system ΛI is sound with respect to the class of iebt-models.

Proof. The proof of soundness is routine: the validity of (SET ) and (IA) is
standard from BST ; the validity of (OAC) and (Unif − H) is shown exactly
as [1]; the validity of (InN) follows straightforwardly from Definitions 4 and 5;
and the validity of (KI) follows from frame condition (KI).
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A.2 Completeness

Definition 7 (Alexandrov spaces). A topological space (X, τ) is said to be
an Alexandrov space iff the intersection of any collection of open sets of X is
an open set as well.

Notice that a space is Alexandrov iff every point x ∈ X has a ⊆-smallest
open set including it, namely the intersection of all the open sets around x.

Definition 8. For a given frame (X,R) such that R is reflexive and transitive,
a set A ⊆ X is called upward-closed iff for x ∈ A, if x ≤ y for some y ∈ X, then
y ∈ A as well. For x ∈ X, x ↑R denotes the set {y ∈ X | xRy}, which is clearly
upward closed.

Remark 2. For a frame (X,R) such that R is reflexive and transitive, the set
of all R-upward-closed sets forms an Alexandrov topology on X, which will be
denoted by τR. For x ∈ X, the ⊆-smallest open set including x is precisely x ↑R.
This implies that {x ↑≤ | x ∈ X} is a basis for the topology τR.

Definition 9 (Kripke-ies-frames & models).
A tuple 〈

W,Ags,R□, Ags, Choice, {≈α}α∈Ags ,
{
RI

α

}
α∈Ags

〉
is called a Kripke-ies-frame (where the acronym ‘ies’ stands for ‘epistemic in-
tentional stit’) iff

– W is a set of possible worlds. R□ is an equivalence relation over W . For
w ∈W , the class of w under R□ is denoted by w.

– Choice is a function that assigns to each α ∈ Ags and each □-class w a
partition Choicewα of w given by an equivalence relation, denoted by Rw

α .
Choice must satisfy the following constraint:
• (IA)K For w ∈W , each function s : Ags→ 2w that maps α to a member

of Choicewα is such that
⋂

α∈Ags s(α) ̸= ∅.
For α ∈ Ags, w ∈ W , and v ∈ w, the class of v in the partition Choicewα is
denoted by Choicewα (v).

– For α ∈ Ags, ≈α is an (epistemic) equivalence relation on W that satisfies
the following conditions:
• (OAC)K For w ∈W and v ∈ w, v ≈α u for every u ∈ Choicewα (v).
• (Unif− H)K Let α ∈ Ags and v, u ∈ W such that v ≈α u. For v′ ∈ v,

there exists u′ ∈ u such that v′ ≈α u
′.

For w, v ∈W such that w ≈α v and L ⊆ w, L’s epistemic cluster at v is the
set [[L]]vα := {u ∈ v; there is o ∈ L such that o ≈α u} .
For α ∈ Ags and w ∈ W , α’s ex ante information set at w is defined
as π□

α [w] := {v;w ≈α ◦R□v}, which by frame condition (Unif− H)K co-
incides with the set {v;wR□◦ ≈α v}. To clarify, (Unif− H)K implies that
R□◦ ≈α=≈α ◦R□. Thus ≈α ◦R□ is an equivalence relation such that
π□
α [w] = π□

α [v] for every w, v ∈W such that w ≈α ◦R□v.
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– For α ∈ Ags, RI
α is a serial, transitive, and euclidean relation on W such

that RI
α ⊆≈α ◦R□ and such that the following condition is satisfied:

• (Den)K For v, u ∈W such that v ≈α ◦R□u, there exists u′ ∈W such that
vRI

αu
′ and uRI

αu
′.

For α ∈ Ags, RI+
α denotes the reflexive closure of RI

α.

A Kripke-ies-model M consists of the tuple that results from adding a valuation
function V to a Kripke-ies-frame, where V : P → 2W assigns to each atomic
proposition a set of worlds.

Kripke-ies-models allow us to evaluate the formulas of LI with semantics
that are analogous to the ones provided for iebt-frames. The semantics for the
formulas of LI are given in the definition below.

Definition 10 (Evaluation rules on Kripke models). Let M be a Kripke-
ies-model. The semantics on M for the formulas of LI are defined recursively by
the following truth conditions, evaluated at a given world w:

M, w |= p iff w ∈ V(p)
M, w |= ¬φ iff M, w ̸|= φ
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= □φ iff for v ∈ w,M, v |= φ
M, w |= [α]φ iff for v ∈ Choicewα (w),M, v |= φ
M, w |= Kαφ iff for v s.t. w ≈α v,M, v |= φ
M, w |= Iαφ iff there exists x ∈ π□

α [w] s.t. x ↑RI+
α
⊆ |φ|.

where I write |φ| to refer to the set {w ∈W ;M, w |= φ}. Satisfiability, validity
on a frame, and general validity are defined as usual.

Definition 11 (Associated iebt-frame).
Let

F =
〈
W,Ags,R□, Choice, {≈α}α∈Ags ,

{
RI

α

}
α∈Ags

〉
be a Kripke-ies-frame. Then FT :=

〈
MW ,⊏, Ags,Choice, {∼α}α∈Ags , τ

〉
is

called the iebt-frame associated to F iff

– MW := W ∪ {w;w ∈W} ∪ {W}, and ⊏ is a relation on MW such that ⊏
is defined as the transitive closure of the union {(w, v);w ∈W and v ∈ w}∪
{(W,w);w ∈W}.
It is clear that ⊏ is a strict partial order on MW that satisfies “no backward
branching” straightforwardly. Since the tuple ⟨MW ,⊏⟩ is thus a tree, let us
refer to the maximal ⊏-chains in MW as histories, and let us denote by HW

the set of all histories of MW . Observe that the definition of ⊏ yields that
there is a bijective correspondence W and HW . For v ∈ W , let hv be the
history {W, v, v}. For o ∈ W , it is clear that o ∈ hv iff o = v. Therefore,
each history in HW can be identified using the world at its terminal node.
Consequently, for w ∈W , if Hw denotes the set of histories passing through
w, then Hw = {hv; v ∈ w}—since w ∈ hv iff v ∈ w. Observe, then, that
HW = {hv; v ∈W}.
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– For B ∈ 2W , let BT denote the set {hv; v ∈ B}. With such a terminology,
we define Choice as a function on Ags×MW given by the rules:
• For α ∈ Ags and v ∈W , Choice(α, v) = {{hv}}.
• For α ∈ Ags and w ∈W , Choice(α,w) =

{
CT

α ;Cα ∈ Choicewα
}
.

• For α ∈ Ags, Choice(α,W ) = {HW }.
To keep notation consistent, the sets of the form Choice(α,w) will be de-
noted by Choicewα . The choice-cell of a given hv in Choicewα is denoted by
Choicewα (hv).

– For α ∈ Ags, ∼α is a relation on I (MW ×HW ) defined as follows:

∼α :=
{(

⟨w, hv⟩ ,
〈
w′, hv′

〉)
;w,w′ ∈W and v ≈α v

′}∪
{(⟨z, hz⟩ , ⟨z, hz⟩) ; z ∈W}∪
{(⟨W,hv⟩ , ⟨W,hv′⟩) ; v, v′ ∈W} .

It is clear that this definition entails that ∼α is an equivalence relation for
every α ∈ Ags and that, for w ∈ W and L ∈ Choicewα , v ∈ [[L]]wα iff hv ∈[
LT

]w
α
.

– τ is a function defined as follows:

• For α ∈ Ags and z ∈W , τ ⟨z,hz⟩
α =

{
∅, π□

α [⟨z, hz⟩]
}

• For α ∈ Ags, we first define a relation RIT
α on

{⟨w, hv⟩ ;w ∈W and v ∈ w} by the rule: ⟨w, hv⟩RIT
α

〈
w′, hv′

〉
iff

vRI
αv

′. For α ∈ Ags, w ∈ W , and v ∈ w, then, we define τ
⟨w,hv⟩
α

as the subspace topology of τRIT+
α

on π□
α [⟨w, hv⟩].8 Observe that, for

α ∈ Ags, w ∈ W , and v ∈ w, π□
α [⟨w, hv⟩] =

{〈
v′, hv′

〉
; v′ ∈ π□

α [v]
}
.

Thus, the fact that RI
α ⊆≈α ◦R□ implies that, for ⟨x, hx⟩ ∈ π□

α [⟨w, hv⟩],
⟨x, hx⟩ ↑RIT+

α
⊆ π□

α [⟨w, hv⟩], so that π□
α [⟨w, hv⟩] is open in τRIT+

α
.

• For α ∈ Ags and v ∈W , τ ⟨W,hv⟩
α =

{
∅, π□

α [⟨W,hv⟩]
}
.

Proposition 2. Let F be a Kripke-ies-frame. Then FT is an iebt-frame.

Proof. It amounts to showing that ⊏ is a strict partial order that satisfies no
backward branching, that Choice is a function that satisfies frame conditions
(NC) and (IA), that {∼α}α∈Ags is such that ≈α is an equivalence relation for
every α ∈ Ags and frame conditions (OAC) and (Unif− H) are met, and that τ
is a function that meets the requirements of Definition 4.

– As mentioned in Definition 11, it is straightforward to show that ⊏ is a
strict partial order that satisfies no backward branching. It is also clear from
Definition 11 that ∼α is an equivalence relation for every α ∈ Ags.

– (NC) is vacuously validated at moment W . It is validated in moments of the
form w (w ∈ W ), since two different histories never intersect in a moment
later than w. Finally, it is also validated in moments of the form v such that
v ∈W (since there are no moments above v).

8 For A ⊆ X and τ a topology on X, the subspace topology of τ on A is the family
{U ∩A |U ∈ τ}.
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– For (IA), we reason by cases:
(a) At moment W , (IA) is validated straightforwardly, since

Choice(α,W ) = {H} for each α ∈ Ags.
(b) For a moment of the form w (with w ∈ W ), let s be a function that as-

signs to each agent α a member of Choicewα =
{
(Cα)

T ;Cα ∈ Choicewα
}
.

Let sk : Ags→
⋃

α∈Ags Choice
w
α be a function such that sk(α) = Cα iff

s(α) = (Cα)
T . Since M satisfies condition (IA)K, then

⋂
α∈Ags sk(α) ̸= ∅.

Take v ∈
⋂

α∈Ags sk(α). Then v ∈ Cα for every α ∈ Ags. This implies
that hv ∈ (Cα)

T for every α ∈ Ags, so
⋂

α∈Ags s(α) ̸= ∅.
(c) At moments of the form v such that v ∈ W , if s is a function that

assigns to each agent α a member of Choice(v, α), s must be constant
and

⋂
α∈Ags s(α) = {hv}.

– For (OAC), again we reason by cases:
(a) Assume that ⟨w, hv⟩ ∼α

〈
w′, hv′

〉
(for w,w′ ∈ W ). This means that

v ≈α v
′. We want to show that, for every hu ∈ Choicewα such that hu ∈

Choicewα (hv), ⟨w, hu⟩ ∼α

〈
w′, hv′

〉
. Therefore, let hu ∈ Choicewα (hv).

By definition, this means that u ∈ Choicewα (v). Since M satisfies condi-
tion (OAC)K, this last fact implies, with v ≈α v

′, that u ≈α v
′, which in

turn yields that ⟨w, hu⟩ ∼α

〈
w′, hv

〉
.

(b) For indices based on moments of the form v such that v ∈ W , (OAC)
is met straightforwardly, since for hv the choice-cell in Choice(α, v) to
which hv belongs is just {hv}.

(c) For indices based on moment W , (OAC) is also met straightforwardly,
since for every α ∈ Ags ∼α is defined such that ⟨W,hv⟩ ∼α ⟨W,hv′⟩ for
every pair of histories hv, hv′ in H.

– For (Unif− H), again we reason by cases:
(a) Assume that ⟨w, hv⟩ ∼α

〈
w′, hv′

〉
(for w,w′ ∈ W ). This means that

v ∈ w, v′ ∈ w′, and v ≈α v′. Let hz ∈ Hw (which means that z ∈ w).
We want to show that there exists h ∈ Hw′ such that ⟨w, hz⟩ ∼α

〈
w′, h

〉
.

Condition (Unif − H)K gives us that there exists z′ ∈ w′ such that
z ≈α z

′, which by definiton of ∼α means that ⟨w, hz⟩ ∼α

〈
w′, hz′

〉
.

(b) For indices based on moments of the form v such that v ∈ W , ⟨v, hv⟩ is
∼α-related only to itself, so (Unif− H) is met straightforwardly.

(c) For indices based on moment W , (Unif− H) is also met straightfor-
wardly, since ⟨W,hv⟩ ∼α ⟨W,hv′⟩ for every v, v′ ∈W .

– As for τ , it is clear that, for α ∈ Ags and index ⟨m,h⟩ either of the form
⟨z, hz⟩ (z ∈ W ) or of the form ⟨W,hv⟩ (v ∈ W ), τ ⟨m,h⟩

α is a topology on
π□
α [⟨m,h⟩] that satisfies frame conditions (CI) and (KI).

Assume, then, that ⟨m,h⟩ is of the form ⟨w, hv⟩ such that v ∈ w. Let
α ∈ Ags. By Definition 11, τ ⟨w,hv⟩

α is the subspace topology of τRIT+
α

on

π□
α [⟨w, hv⟩]. Thus, it is clear that τ ⟨w,hv⟩

α is a topology on π□
α [⟨w, hv⟩], so that

τ straightforwardly satisfies (KI). Let us show that condition (CI) is also sat-
isfied: let U, V ∈ τ

⟨w,hv⟩
α such that U and V are non-empty. Let ⟨u, hu⟩ ∈ U

and ⟨x, hx⟩ ∈ V . Definition 11 implies that u ≈α ◦R□x. F ’s condition (Den)K
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implies that there exists u′ ∈W such that uRI
αu

′ and xRI
αu

′, which implies
that ⟨u, hu⟩RIT

α

〈
u′, hu′

〉
and ⟨x, hx⟩RIT

α

〈
u′, hu′

〉
, by definition of RIT

α . This
means that

〈
u′, hu′

〉
∈ ⟨u, hu⟩ ↑RIT+

α
and

〈
u′, hu′

〉
∈ ⟨x, hx⟩ ↑RIT+

α
. Since

π□
α [⟨w, hv⟩] is open in τRIT+

α
, we know that ⟨u, hu⟩ ↑RIT+

α
⊆ U and that

⟨x, hx⟩ ↑RIT+
α

⊆ V . Thus,
〈
u′, h

〉
∈ U ∩V , so that U and V are τ ⟨w,hv⟩

α -dense.

Let M be a Kripke-ies-model with valuation function V. The frame upon
which M is based has an associated iebt-frame. If to the tuple of this iebt-frame
one adds a valuation function Vt such that Vt(p) = {⟨w, hw⟩ ;w ∈ V(p)}, the
resulting model is called the iebt-model associated to M.

Proposition 3. Let M be a Kripke-ies-model, and let MT denote its associated
iebt-model. For φ of LI and w ∈W , M, w |= φ iff MT , ⟨w, hw⟩ |= φ.

Proof. We proceed by induction on φ. For the base case, take a propositional
letter p and an arbitrary w ∈W . Then M, w |= p iff w ∈ V(p) iff ⟨w, hw⟩ ∈ VT (p)
iff MT , ⟨w, hw⟩ |= p. The cases of Boolean connectives are standard, so let us
deal with the modal operators. Let w ∈W and α ∈ Ags.

– (□) M, w |= □φ iff for every v ∈ w, M, v |= φ, which by induction hy-
pothesis happens iff MT , ⟨v, hv⟩ |= φ for every v ∈ w, which happens iff
MT , ⟨w, hw⟩ |= □φ, since it is the case that hv ∈ Hw iff v ∈ w.

– ([α]) M, w |= [α]φ iff for every v ∈ W such that wRw
αv, M, v |= φ,

which by induction hypothesis happens iff MT , ⟨w, hv⟩ |= φ for every
hv ∈ Choicewα (hw), which in turn happens iff MT , ⟨w, hw⟩ |= [α]φ.

– (Kα) M, w |= Kαφ iff for every v ∈ W such that w ≈α v, M, v |= φ, which
by induction hypothesis occurs iff MT , ⟨v, hv⟩ |= φ for every hv ∈ H such
that ⟨w, hw⟩ ∼α ⟨v, hv⟩, which happens iff MT , ⟨w, hw⟩ |= Kαφ.

– (Iα) First, observe that the induction hypothesis implies that ∥φ∥ =
{⟨w, hw⟩ ;w ∈ |φ|}. Therefore, M, w |= Iαφ iff there exists x ∈ π□

α [w] such
that x ↑RI+

α
⊆ |φ| iff ⟨x, hx⟩ ↑RIT+

α
⊆ ∥φ∥ iff there exists U ∈ τ

⟨w,hw⟩
α such

that U ⊆ ∥φ∥ iff MT , ⟨w, hw⟩ |= Iαφ.

A.3 Canonical Kripke-ies-structure

We show that the proof system ΛI is complete with respect to the class of Kripke-
ies-models. For each ΛI -consistent formula φ, we build a canonical structure from
the syntax that satisfies φ.

Definition 12 (Canonical Structure). The tuple

M =
〈
WΛI , R□, Choice, {≈α}α∈Ags ,

{
RI

α

}
α∈Ags

,V
〉

is called a canonical structure for ΛI iff

– WΛI = {w;w is a ΛI -MCS}. R□ is a relation on WΛI defined by ther rule:
for w, v ∈WΛI , wR□v iff □φ ∈ w ⇒ φ ∈ v for every φ of LI. For w ∈WΛI ,
the set

{
v ∈WΛI ;wR□v

}
is denoted by w.
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– Choice is a function that assigns to each α and w a subset of 2w, denoted
by Choicewα , and defined as follows: let Rw

α be a relation on w such that, for
w, v ∈WΛI , wRw

αv iff [α]φ ∈ w ⇒ φ ∈ v for every φ of LI; if Choicewα (v) :={
u ∈ w; vRw

αu
}
, then Choicewα :=

{
Choicewα (v); v ∈ w

}
.

– For α ∈ Ags, ≈α is an epistemic relation on WΛI given by the rule: for
w, v ∈WΛI , w ≈α v iff Kαφ ∈ w ⇒ φ ∈ v for every φ of LI.

– For α ∈ Ags, RI
α is a relation on WΛI given by the rule: for w, v ∈ WΛI ,

wRI
αv iff Iαφ ∈ w ⇒ φ ∈ v for every φ of LI.

– V is the canonical valuation, defined such that w ∈ V(p) iff p ∈ w.

Proposition 4. The canonical structure M for ΛI is a Kripke-ies-model.

Proof. We want to show that the tuple〈
WΛI , R□, Choice, {≈α}α∈Ags ,

{
RIα

}
α∈Ags

〉
is a Kripke-ies-frame, which

amounts to showing that the tuple satisfies the items in the definition of Kripke-
ies-frames (Definition 9).

– It is clear that R□ is an equivalence relation, since ΛI includes the S5 axioms
for □.

– Since ΛI includes the S5 schemata for [α] (α ∈ Ags), Rw
α is an equivalence

relation for α ∈ Ags and w ∈ WΛI . Moreover, since ΛI includes schema
(SET ), Rw

α ⊆ w × w for every w ∈ WΛI . Thus, Choice indeed assigns to
each α and w a partition of w.
To show that frame condition (IA)K is satisfied, we first prove two interme-
diate results:
(a) For w∗ ∈WΛI , w ∈ w∗ iff {□ψ;□ψ ∈ w∗} ⊆ w. (⇒) Let w ∈ w∗ (which

means that w∗R□w). Take φ of LKx such that □φ ∈ w∗. Since w∗ is
closed under Modus Ponens, axiom (4) for □ implies that □□φ ∈ w∗.
By definition of R□, □φ ∈ w. (⇐) Assume that {□ψ;□ψ ∈ w∗} ⊆ w.
Take φ of LKX such that □φ ∈ w∗. By assumption, □φ ∈ w. Since w is
closed under Modus Ponens, axiom (T ) for □ implies that φ ∈ w. Thus,
w∗R□w and w ∈ w∗.

(b) If w∗ ∈WΛI and s : Ags→ 2w∗ maps α to a member of Choicew∗
α such

that vs(α) ∈ s(α), then w ∈ s(α) iff ∆s(α) =
{
[α]ψ; [α]ψ ∈ vs(α)

}
⊆ w.

(⇒) Let w ∈ s(α) (which means that vs(α)Rαw). Take φ of LKX such
that [α]φ ∈ vs(α). Since vs(α) is closed under Modus Ponens, schema
(4) for [α] implies that [α][α]φ ∈ vs(α). Therefore, by definition of Rα,
[α]φ ∈ w. (⇐) Assume that ∆s(α) =

{
[α]ψ; [α]ψ ∈ vs(α)

}
⊆ w. Take

φ of LKX such that [α]φ ∈ vs(α). By assumption, [α]φ ∈ w. Since w is
closed under Modus Ponens, axiom (T ) for [α] implies that φ ∈ w. Thus,
vs(α)R

w∗
α w and w ∈ s(α).

Next we show that, for w∗ ∈ WΛI and s : Ags → 2w∗ just as in item b
above,

⋃
α∈Ags∆s(α) ∪ {□ψ;□ψ ∈ w∗} is ΛI -consistent: first we show that⋃

α∈Ags∆s(α) is consistent. Suppose that this is not the case. Then there
exists a set {φ1, . . . , φn} of formulas of LKX such that [αi]φi ∈ vs(αi) for
every 1 ≤ i ≤ n and

⊢ΛI
[α1]φ1 ∧ · · · ∧ [αn]φn → ⊥. (1)
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Without loss of generality, assume that αi ̸= αj for all j ̸= i such that
j, i ∈ {1, . . . , n}—this assumption hinges on the fact that any stit operator
distributes over conjunction. Notice that the fact that [αi]φi ∈ vs(αi) for
every 1 ≤ i ≤ n implies that ♢[αi]φi ∈ w∗ for every 1 ≤ i ≤ n. Since w∗ is
closed under conjunction, ♢[α1]φ1 ∧ · · · ∧ ♢[αn]φn ∈ w∗.
Axiom (IA) then implies that

⊢ΛI
♢[α1]φ1 ∧ · · · ∧ ♢[αn]φn → ♢ ([α1]φ1 ∧ · · · ∧ [αn]φn) . (2)

Therefore, equations (2) and (1), imply that

⊢ΛI
♢[α1]φ1 ∧ · · · ∧ ♢[αn]φn → ♢⊥. (3)

But this is a contradiction, since ♢[α1]φ1 ∧ · · · ∧ ♢[αn]φn ∈ w∗, and w∗ is
a ΛI -MCS. Therefore,

⋃
α∈Ags∆s(α) is consistent. Secondly, we show that

the union
⋃

α∈Ags∆s(α) ∪ {□ψ;□ψ ∈ w∗} is also consistent. Suppose that
this is not the case. Since

⋃
α∈Ags∆s(α) is consistent, there must exist sets

{φ1, . . . , φn} and {θ1, . . . , θm} of formulas of LKX such that [αi]φi ∈ vs(αi)

for every 1 ≤ i ≤ n, □θi ∈ w∗ for every 1 ≤ i ≤ m, and

⊢ΛI
[α1]φ1 ∧ · · · ∧ [αn]φn ∧□θ1 ∧ · · · ∧□θm → ⊥. (4)

Let θ = θ1 ∧ · · · ∧ θm. Since □ distributes over conjunction, ⊢ΛI
□θ ↔

□θ1 ∧ · · · ∧ □θm, where it is important to mention that, since w∗ is a ΛI -
MCS closed under logical equivalence, □θ ∈ w∗. Thus, (4) implies that

⊢ΛI
([α1]φ1 ∧ · · · ∧ [αn]φn) → ¬□θ. (5)

Once again, assume without loss of generality that αi ̸= αj for all j ̸= i such
that j, i ∈ {1, . . . , n}. By an argument analogous to the one used to show
that

⋃
α∈Ags∆s(α) is consistent, (5) implies that

⊢ΛI
♢[α1]φ1 ∧ · · · ∧ ♢[αn]φn → ♢¬□θ. (6)

This entails that ♢¬□θ ∈ w∗, but this is a contradiction, since the fact that
□θ ∈ w∗ implies with axiom (4) for □ that □□θ ∈ w∗. Now, let u∗ be
the ΛI -MCS that includes

⋃
α∈Ags∆s(α) ∪ {□ψ;□ψ ∈ w∗}. By intermediate

result a, it is clear that u∗ ∈ w∗. By intermediate result b, it is clear that
u∗ ∈ s(α) for every α ∈ Ags. Therefore, we have shown that, for w∗ ∈ W ,
each function s : Ags → 2w∗ that maps α to a member of Choicew∗

α is such
that

⋂
α∈Ags s(α) ̸= ∅, which means that M satisfies (IA)K.

– Since the proof system ΛI includes the S5 axioms for Kα (α ∈ Ags), ≈α is
an equivalence relation for α ∈ Ags. We verify that M satisfies conditions
(OAC)K and (Unif− H)K.
For (OAC)K, let w∗ ∈ WΛI and α ∈ Ags. Assume that v, u ∈ w∗ are such
that v ≈α u. Let v′ ∈ Choicew∗

α (v). This means that vRαv
′. We want to

show that v′ ≈α u, so let φ be a formula of LKO such that Kαφ ∈ v′. By
schema (4) for Kα, KαKαφ ∈ v′. Similarly, since all substitutions of axiom
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(OAC) lie within v′ and it is closed under Modus Ponens, [α]Kαφ also lies
in v′. Since v′Rαv, this implies that Kαφ ∈ v. Therefore, our assumption
that v ≈α u entails that φ ∈ u. With this, we have shown that the fact that
Kαφ ∈ v′ implies that φ ∈ u, which means that v′ ≈α u.
For (Unif− H)K, let v, u ∈ WΛI such that v ≈α u. Take v′ ∈ v. We
want to show that there exists u′ ∈ u such that v′ ≈α u′. We show that
u′′ = {ψ;Kαψ ∈ v′} ∪ {□ψ;□ψ ∈ u} is consistent. To do so, we first show
that {ψ;Kαψ ∈ v′} is consistent. Suppose for a contradiction that it is not
consistent. Then there exists a set {ψ1, . . . , ψn} of formulas of LKX such
that Kαψi ∈ v′ for every 1 ≤ i ≤ n and (a) ⊢ΛI

ψ1 ∧ · · · ∧ ψn → ⊥.
By Necessitation for Kα and its distributivity over conjunction, (a) implies
that ⊢ΛI

Kαψ1 ∧ · · · ∧ Kαψn → Kα⊥, but this is a contradiction, since
v′ is a ΛI -MCS and it includes Kαψ1 ∧ · · · ∧ Kαψn. Next we show that
u′′ = {ψ;Kαψ ∈ v′} ∪ {□ψ;□ψ ∈ u} is also consistent. Suppose for a con-
tradiction that it is not consistent. Since {ψ;Kαψ ∈ v′} and {□ψ;□ψ ∈ u}
are consistent, there must exist sets {φ1, . . . , φn} and {θ1, . . . , θm} of for-
mulas of LKX such that Kαφi ∈ v′ for every 1 ≤ i ≤ n, □θi ∈ w2 for
every 1 ≤ i ≤ m, and (b) ⊢ΛI

φ1 ∧ · · · ∧ φn ∧ □θ1 ∧ · · · ∧ □θm → ⊥. Let
θ = θ1∧· · ·∧θm and φ = φ1∧· · ·∧φn. Since □ distributes over conjunction,
⊢ΛI

□θ ↔ □θ1 ∧ · · · ∧ □θm, where it is important to mention that, since u
is a ΛI -MCS, then □θ ∈ u and (⋆) □□θ ∈ u as well. In this way, (b) implies
that ⊢ΛI

φ→ ¬□θ and thus that (c) ⊢ΛI
♢φ→ ♢¬□θ. Notice that the facts

that Kαφi ∈ v′ for every 1 ≤ i ≤ n, that Kα distributes over conjunction,
and that v′ is a ΛI -MCS imply that Kαφ ∈ v′. The fact that v′ ∈ v implies
that ♢Kαφ ∈ v, so that (Unif −H) entails that Kα♢φ ∈ v. Now, this last
inclusion implies, with our assumption that v ≈α u, that ♢φ ∈ u, which by
(c) in turn yields that ♢¬□θ ∈ u, contradicting (⋆). Therefore, u′′ is consis-
tent. Let u′ be the ΛI -MCS that includes u′′. It is clear from its construction
that u′ ∈ u and that v′ ≈α u′. With this, we have shown that M satisfies
condition (Unif− H)K.

– Since ΛI includes the KD45 schemata for Iα (α ∈ Ags), then RI
α is a serial,

transitive, and euclidean relation on W , for α ∈ Ags. Since ΛI includes
schema (InN), then RI

α ⊆≈α ◦R□ for α ∈ Ags.
We now verify that frame condition (Den)K is satisfied. Let v, u ∈WΛI such
that v ≈α ◦R□u. This means that there exists w such that v ∈ w and
w ≈α u. We want to show that there exists uRI

αu
′ such that vRI

αu
′. We

show that u′′ = {ψ; Iαψ ∈ v} ∪ {ψ; Iαψ ∈ u} is consistent. To do so, we first
show that {ψ; Iαψ ∈ v} is consistent. Suppose for a contradiction that it
is not consistent. Then there exists a set {ψ1, . . . , ψn} of formulas of LKX
such that Iαψi ∈ v for every 1 ≤ i ≤ n and (a) ⊢ΛI

ψ1 ∧ · · · ∧ ψn → ⊥.
By Necessitation for Iα and its distributivity over conjunction, (a) implies
that ⊢ΛI

Iαψ1 ∧ · · · ∧ Iαψn → Iα⊥, but this is a contradiction, since v
is a ΛI -MCS and it includes Iαψ1 ∧ · · · ∧ Iαψn. Next we show that u′′ =
{ψ; Iαψ ∈ v} ∪ {ψ; Iαψ ∈ u} is also consistent. Suppose for a contradiction
that it is not consistent. Since {ψ; Iαψ ∈ v′} and {ψ; Iαψ ∈ u} are consistent,
there must exist sets {φ1, . . . , φn} and {θ1, . . . , θm} of formulas of LKX such
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that Iαφi ∈ v for every 1 ≤ i ≤ n, Iαθi ∈ w2 for every 1 ≤ i ≤ m, and (b)
⊢ΛI

φ1∧· · ·∧φn∧θ1∧· · ·∧□θm → ⊥. Let θ = θ1∧· · ·∧θm and φ = φ1∧· · ·∧φn.
Thus, (b) implies that ⊢ΛI

φ → ¬θ and thus that (c) ⊢ΛI
⟨Iα⟩φ → ⟨Iα⟩¬θ.

Notice that the facts that Iαφi ∈ v for every 1 ≤ i ≤ n, that Iα distributes
over conjunction, and that v is a ΛI -MCS imply that Iαφ ∈ v. Analogously,
one has that (⋆) Iαθ ∈ u. The fact that v ∈ w implies that ♢Iαφ ∈ w,
so that (Den) entails that Kα⟨Iα⟩φ ∈ w. Now, this last inclusion implies,
with the fact that w ≈α u, that ⟨Iα⟩φ ∈ u, which by (c) in turn yields that
⟨Iα⟩¬θ ∈ u, contradicting (⋆). Therefore, u′′ is consistent. Let u′ be the ΛI -
MCS that includes u′′. It is clear from its construction that uRI

αu
′ and that

vRI
αu

′. With this, we have shown that M satisfies (Den)K.

Lemma 1 (Existence for non-intentional operators). Let M be the canon-
ical Kripke-ies-model for ΛI . Let w ∈WΛI . For φ of LI, the following items hold:

1. □φ ∈ w iff φ ∈ v for every v ∈ w.
2. [α]φ ∈ w iff φ ∈ v for every v ∈ w such that wRw

αv.
3. Kαφ ∈ w iff φ ∈ v for every v ∈WΛI such that w ≈α v.

Proof. Let w ∈WΛI , and take φ of LI. All items are shown in the same way. Let
△ ∈ {□, [α],Kα}, and let R△ stand for the relation upon which the semantics
of △φ is defined. We show that △φ ∈ w iff φ ∈ v for every v ∈ WΛI such that
wR△v.

(⇒) Assume that △φ ∈ w. Let v ∈WΛI such that wR△v. The definition of
R△ straightforwardly gives that φ ∈ v.

(⇐) We work by contraposition. Assume that △φ /∈ w. We show that there
is a world v in WΛI such that wR△v and such that φ does not lie within it. For
this, let v′ = {ψ;△ψ ∈ w}, which is shown to be consistent as follows: suppose
for a contradiction that v′ is not consistent; then there exists a set {ψ1, . . . , ψn}
of formulas of LKX such that {ψ1, . . . , ψn} ⊆ v′ and (a) ⊢ΛI

ψ1 ∧ · · · ∧ ψn → ⊥;
now, the fact that {ψ1, . . . , ψn} ⊆ v′ means that △ψi ∈ w for every 1 ≤ i ≤ n;
Necessitation for △ and its distributivity over conjunction yield that (a) implies
that ⊢ΛI

△ψ1∧· · ·∧△ψn → △⊥, but this is a contradiction, since w is a ΛI -MCS
which includes △ψ1 ∧ · · · ∧ △ψn. Now, we define v′ :′= v′ ∪ {¬φ}, and we show
that it is also consistent: suppose for a contradiction that it is not consistent;
since v′ is consistent, there exists a set {ψ1, . . . , ψn} of formulas of LKX such
that {ψ1, . . . , ψn} ⊆ v′ and ⊢ΛI

ψ1∧ · · ·∧ψn∧¬φ→ ⊥, which then implies that
(b) ⊢ΛI

ψ1 ∧ · · · ∧ ψn → φ; By Necessitation for △ and its distributivity over
conjunction, (b) implies that ⊢ΛI

△ψ1 ∧ · · · ∧△ψn → △φ; but, since w is a ΛI -
MCS, then △ψ1∧ · · ·∧△ψn ∈ w, so that (b) and the fact that w is closed under
Modus Ponens entail that △φ ∈ w, contradicting the initial assumption that
△φ /∈ w. Let v be the ΛI -MCS that includes v′′. It is clear from its construction
that φ /∈ v and that wR△v, by definition of R△.

Lemma 2 (Truth Lemma). Let M be the canonical Kripke-ies-model for ΛI .
For φ of LI and w ∈WΛI , M, w |= φ iff φ ∈ w.
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Proof. We proceed by induction on φ. The cases of Boolean connectives are
standard. For formulas involving □, [α], and Kα, both directions follow straight-
forwardly from Lemma 1 (items 1, 2, and 3, respectively). As for Iα, we have
the following arguments:

– (“Iα”)
(⇒) We work by contraposition. Suppose that Iαφ /∈ w. Take x ∈ π□

α [w].
The assumption that ¬Iαφ ∈ w implies, by schema (KI) and closure of w
under Modus Ponens, that □Kα¬Iαφ ∈ w. Since x ∈ π□

α [w], this implies
that ¬Iαφ ∈ x. By an argument analogous to the one used in Proposition
4 to show that the canonical model satisfies (Den)K, the set {ψ; Iαψ ∈ x} is
consistent. Next, observe that {ψ; Iαψ ∈ w} ∪ {¬φ} is consistent. Suppose
it is not consistent. Since {ψ; Iαψ ∈ w} is consistent, there must exist a set
{φ1, . . . , φn} such that Iαφi ∈ w for every 1 ≤ i ≤ n and ⊢ΛI

(φ1∧· · ·∧φn)∧
¬φ → ⊥ Now, this ΛI -theorem implies that ⊢ΛI

(φ1 ∧ · · · ∧ φn) → φ. By
Necessitation of Iα, its schema (K), and its distributivity over conjunction,
one then has that (⋆) ⊢ΛI

(Iαφ1∧· · ·∧Iαφn) → Iαφ. Now, closure of w under
conjunction then implies that

(∧
1≤i≤n Iαφi

)
∈ x, so that the antecedent

in ΛI -theorem (⋆) lies in x. Closure of x under Modus Ponens then implies
that Iαφ ∈ x, but this contradicts the previously shown fact that Iαφ /∈ x.
Therefore, {ψ; Iαψ ∈ w} ∪ {¬φ} is in fact consistent. Let u be the ΛI -MCS
that includes {ψ; Iαψ ∈ w}∪ {¬φ}. It is clear from construction that xRI

αu,
so that u ∈ x ↑R+

α
. It also clear from construction that ¬φ ∈ x, so that the

induction hypothesis yields that M, x |= ¬φ. Thus, x is such that x ∈ π□
α [w]

and such that x ↑R+
α
̸⊆ |φ|, which implies that M, w ̸|= φ.

(⇐) Assume that Iαφ ∈ w. Suppose for a contradiction that M, w ̸|= Iαφ.
This means that, for x ∈ π□

α [w], there exists y such that xRI+
α y and M, y ̸|=

φ. Now, we have two cases. If for every x ∈ π□
α [w] the y such that xRI+

α y
and M, y ̸|= φ is actually x itself, then M, x ̸|= φ for every x ∈ π□

α [w]. By
induction hypothesis, this implies that ¬φ ∈ x for every x ∈ π□

α [w], which,
by items 1 and 3 of Lemma 1, implies that □Kα¬φ ∈ x for every x ∈ π□

α [w].
In particular, □Kα¬φ ∈ w. Schema (InN) and closure of w under Modus
Ponens then imply that I¬φ ∈ w, but this is a contradiction, since the fact
that Iαφ ∈ w, with schema (D) for Iα and closure of w under Modus Ponens,
implies that ¬I¬φ ∈ w. The other case is that there exist x, y ∈ π□

α [w] such
that xRI+

α y, M, y ̸|= φ, and y ̸= x. By induction hypothesis, φ /∈ y. Since
xRI+

α y and y ̸= x, then xRI
αy, so the definition of RI

α implies that Iαφ ̸∈ x.
As such, ¬Iαφ ∈ x, which, by schema (KI) and closure of x under Modus
Ponens, implies that □Kα¬Iαφ ∈ x. Since x ∈ π□

α [w], this implies that
¬Iαφ ∈ w, but this is a contradiction to the initial assumption.

Theorem 2 (Completeness w.r.t. Kripke-ies-models). The proof system
ΛI is complete with respect to the class of Kripke-ies-models.

Proof. Let φ be a ΛI -consistent formula of LI. Let w be the ΛI -MCS including
φ. The canonical Kripke-ies-model M for ΛI is such that M, w |= φ.
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Back to branching-time models

Theorem 3 (Completeness w.r.t. iebt-models). The proof system ΛI is
complete with respect to the class of iebt-models.

Proof. Let φ be a ΛI -consistent formula of LI. Theorem 2 implies that there
exists a Kripke-ies-model M and a world w in its domain such that M, w |= φ.
Proposition 3 then ensures that the iebt-model MT associated to M is such that
MT , ⟨w, hw⟩ |= φ.

Therefore, the following result, appearing in the main body of the paper, has
been shown:

Theorem 1. The proof system ΛI is sound and complete with respect to the
class of iebt-models.

⊓⊔
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